Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrJQW..
/
58def..
PUPuS..
/
bc09b..
vout
PrJQW..
/
9e4e8..
0.08 bars
TMFPi..
/
f5927..
ownership of
81ffc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJpi..
/
31606..
ownership of
4eab8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGXC..
/
30f1b..
ownership of
f4ba4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEs2..
/
13b81..
ownership of
247a9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYiw..
/
970d4..
ownership of
95255..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYCs..
/
13131..
ownership of
4eb70..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTEE..
/
e7bc1..
ownership of
91a3a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTVK..
/
45158..
ownership of
ac22b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVNZ..
/
7ee17..
ownership of
d4499..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHCt..
/
73287..
ownership of
1e8bf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TML52..
/
bbbec..
ownership of
bf967..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZrb..
/
9b2a3..
ownership of
38116..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbfh..
/
473a3..
ownership of
b1bb7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKUz..
/
fa80c..
ownership of
48ca9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKNw..
/
ceb6f..
ownership of
49c00..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF5d..
/
8eb08..
ownership of
2562c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVVk..
/
22bc3..
ownership of
54565..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWr4..
/
881d7..
ownership of
a5ffb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXsV..
/
46b84..
ownership of
c4c5d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYMB..
/
c776f..
ownership of
2b111..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMY9H..
/
c9d8b..
ownership of
a561b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYpm..
/
bc29b..
ownership of
03f9b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYZF..
/
22535..
ownership of
46990..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHNN..
/
8242f..
ownership of
8f075..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTUW..
/
478cf..
ownership of
d2f25..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMG5G..
/
5da0d..
ownership of
f3676..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYHC..
/
c4229..
ownership of
30777..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ9y..
/
6b32c..
ownership of
c6b91..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNn2..
/
15207..
ownership of
90577..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNTK..
/
75f50..
ownership of
850a6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXRm..
/
83358..
ownership of
c1a28..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFEn..
/
98ad5..
ownership of
ecf26..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUQPq..
/
a2348..
doc published by
PrCmT..
Known
df_mend__df_sdrg__df_cytp__df_topsep__df_toplnd__df_rcl__df_he__ax_frege1__ax_frege2__ax_frege8__ax_frege28__ax_frege31__ax_frege41__ax_frege52a__ax_frege54a__ax_frege58a__ax_frege52c__ax_frege54c
:
∀ x0 : ο .
(
wceq
cmend
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
co
(
cv
x1
)
(
cv
x1
)
clmhm
)
(
λ x2 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x2
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
co
(
cv
x3
)
(
cv
x4
)
(
cof
(
cfv
(
cv
x1
)
cplusg
)
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
ccom
(
cv
x3
)
(
cv
x4
)
)
)
)
)
(
cpr
(
cop
(
cfv
cnx
csca
)
(
cfv
(
cv
x1
)
csca
)
)
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x3 x4 .
cfv
(
cfv
(
cv
x1
)
csca
)
cbs
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
co
(
cxp
(
cfv
(
cv
x1
)
cbs
)
(
csn
(
cv
x3
)
)
)
(
cv
x4
)
(
cof
(
cfv
(
cv
x1
)
cvsca
)
)
)
)
)
)
)
)
)
⟶
wceq
csdrg
(
cmpt
(
λ x1 .
cdr
)
(
λ x1 .
crab
(
λ x2 .
wcel
(
co
(
cv
x1
)
(
cv
x2
)
cress
)
cdr
)
(
λ x2 .
cfv
(
cv
x1
)
csubrg
)
)
)
⟶
wceq
ccytp
(
cmpt
(
λ x1 .
cn
)
(
λ x1 .
co
(
cfv
(
cfv
ccnfld
cpl1
)
cmgp
)
(
cmpt
(
λ x2 .
cima
(
ccnv
(
cfv
(
co
(
cfv
ccnfld
cmgp
)
(
cdif
cc
(
csn
cc0
)
)
cress
)
cod
)
)
(
csn
(
cv
x1
)
)
)
(
λ x2 .
co
(
cfv
ccnfld
cv1
)
(
cfv
(
cv
x2
)
(
cfv
(
cfv
ccnfld
cpl1
)
cascl
)
)
(
cfv
(
cfv
ccnfld
cpl1
)
csg
)
)
)
cgsu
)
)
⟶
wceq
ctopsep
(
crab
(
λ x1 .
wrex
(
λ x2 .
wa
(
wbr
(
cv
x2
)
com
cdom
)
(
wceq
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ccl
)
)
(
cuni
(
cv
x1
)
)
)
)
(
λ x2 .
cpw
(
cuni
(
cv
x1
)
)
)
)
(
λ x1 .
ctop
)
)
⟶
wceq
ctoplnd
(
crab
(
λ x1 .
wral
(
λ x2 .
wceq
(
cuni
(
cv
x1
)
)
(
cuni
(
cv
x2
)
)
⟶
wrex
(
λ x3 .
wa
(
wbr
(
cv
x3
)
com
cdom
)
(
wceq
(
cuni
(
cv
x1
)
)
(
cuni
(
cv
x3
)
)
)
)
(
λ x3 .
cpw
(
cv
x1
)
)
)
(
λ x2 .
cpw
(
cv
x1
)
)
)
(
λ x1 .
ctop
)
)
⟶
wceq
crcl
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cint
(
cab
(
λ x2 .
wa
(
wss
(
cv
x1
)
(
cv
x2
)
)
(
wss
(
cres
cid
(
cun
(
cdm
(
cv
x2
)
)
(
crn
(
cv
x2
)
)
)
)
(
cv
x2
)
)
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
whe
x1
x2
)
(
wss
(
cima
x2
x1
)
x1
)
)
⟶
(
∀ x1 x2 : ο .
x1
⟶
x2
⟶
x1
)
⟶
(
∀ x1 x2 x3 : ο .
(
x1
⟶
x2
⟶
x3
)
⟶
(
x1
⟶
x2
)
⟶
x1
⟶
x3
)
⟶
(
∀ x1 x2 x3 : ο .
(
x1
⟶
x2
⟶
x3
)
⟶
x2
⟶
x1
⟶
x3
)
⟶
(
∀ x1 x2 : ο .
(
x1
⟶
x2
)
⟶
wn
x2
⟶
wn
x1
)
⟶
(
∀ x1 : ο .
wn
(
wn
x1
)
⟶
x1
)
⟶
(
∀ x1 : ο .
x1
⟶
wn
(
wn
x1
)
)
⟶
(
∀ x1 x2 x3 x4 : ο .
wb
x1
x2
⟶
wif
x1
x4
x3
⟶
wif
x2
x4
x3
)
⟶
(
∀ x1 : ο .
wb
x1
x1
)
⟶
(
∀ x1 x2 x3 : ο .
wa
x2
x3
⟶
wif
x1
x2
x3
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
wceq
(
x2
x4
)
(
x3
x4
)
⟶
wsbc
x1
(
x2
x4
)
⟶
wsbc
x1
(
x3
x4
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
x1
x1
)
⟶
x0
)
⟶
x0
Theorem
df_mend
:
wceq
cmend
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
co
(
cv
x0
)
(
cv
x0
)
clmhm
)
(
λ x1 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
co
(
cv
x2
)
(
cv
x3
)
(
cof
(
cfv
(
cv
x0
)
cplusg
)
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
ccom
(
cv
x2
)
(
cv
x3
)
)
)
)
)
(
cpr
(
cop
(
cfv
cnx
csca
)
(
cfv
(
cv
x0
)
csca
)
)
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x2 x3 .
cfv
(
cfv
(
cv
x0
)
csca
)
cbs
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
co
(
cxp
(
cfv
(
cv
x0
)
cbs
)
(
csn
(
cv
x2
)
)
)
(
cv
x3
)
(
cof
(
cfv
(
cv
x0
)
cvsca
)
)
)
)
)
)
)
)
)
(proof)
Theorem
df_sdrg
:
wceq
csdrg
(
cmpt
(
λ x0 .
cdr
)
(
λ x0 .
crab
(
λ x1 .
wcel
(
co
(
cv
x0
)
(
cv
x1
)
cress
)
cdr
)
(
λ x1 .
cfv
(
cv
x0
)
csubrg
)
)
)
(proof)
Theorem
df_cytp
:
wceq
ccytp
(
cmpt
(
λ x0 .
cn
)
(
λ x0 .
co
(
cfv
(
cfv
ccnfld
cpl1
)
cmgp
)
(
cmpt
(
λ x1 .
cima
(
ccnv
(
cfv
(
co
(
cfv
ccnfld
cmgp
)
(
cdif
cc
(
csn
cc0
)
)
cress
)
cod
)
)
(
csn
(
cv
x0
)
)
)
(
λ x1 .
co
(
cfv
ccnfld
cv1
)
(
cfv
(
cv
x1
)
(
cfv
(
cfv
ccnfld
cpl1
)
cascl
)
)
(
cfv
(
cfv
ccnfld
cpl1
)
csg
)
)
)
cgsu
)
)
(proof)
Theorem
df_topsep
:
wceq
ctopsep
(
crab
(
λ x0 .
wrex
(
λ x1 .
wa
(
wbr
(
cv
x1
)
com
cdom
)
(
wceq
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ccl
)
)
(
cuni
(
cv
x0
)
)
)
)
(
λ x1 .
cpw
(
cuni
(
cv
x0
)
)
)
)
(
λ x0 .
ctop
)
)
(proof)
Theorem
df_toplnd
:
wceq
ctoplnd
(
crab
(
λ x0 .
wral
(
λ x1 .
wceq
(
cuni
(
cv
x0
)
)
(
cuni
(
cv
x1
)
)
⟶
wrex
(
λ x2 .
wa
(
wbr
(
cv
x2
)
com
cdom
)
(
wceq
(
cuni
(
cv
x0
)
)
(
cuni
(
cv
x2
)
)
)
)
(
λ x2 .
cpw
(
cv
x0
)
)
)
(
λ x1 .
cpw
(
cv
x0
)
)
)
(
λ x0 .
ctop
)
)
(proof)
Theorem
df_rcl
:
wceq
crcl
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cint
(
cab
(
λ x1 .
wa
(
wss
(
cv
x0
)
(
cv
x1
)
)
(
wss
(
cres
cid
(
cun
(
cdm
(
cv
x1
)
)
(
crn
(
cv
x1
)
)
)
)
(
cv
x1
)
)
)
)
)
)
(proof)
Theorem
df_he
:
∀ x0 x1 :
ι → ο
.
wb
(
whe
x0
x1
)
(
wss
(
cima
x1
x0
)
x0
)
(proof)
Theorem
ax_frege1
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
x0
(proof)
Theorem
ax_frege2
:
∀ x0 x1 x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
(
x0
⟶
x1
)
⟶
x0
⟶
x2
(proof)
Theorem
ax_frege8
ax_frege8
:
∀ x0 x1 x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x1
⟶
x0
⟶
x2
(proof)
Theorem
ax_frege28
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
wn
x1
⟶
wn
x0
(proof)
Theorem
ax_frege31
:
∀ x0 : ο .
wn
(
wn
x0
)
⟶
x0
(proof)
Theorem
ax_frege41
:
∀ x0 : ο .
x0
⟶
wn
(
wn
x0
)
(proof)
Theorem
ax_frege52a
:
∀ x0 x1 x2 x3 : ο .
wb
x0
x1
⟶
wif
x0
x3
x2
⟶
wif
x1
x3
x2
(proof)
Theorem
ax_frege54a
:
∀ x0 : ο .
wb
x0
x0
(proof)
Theorem
ax_frege58a
:
∀ x0 x1 x2 : ο .
wa
x1
x2
⟶
wif
x0
x1
x2
(proof)
Theorem
ax_frege52c
ax_frege52c
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 .
wceq
(
x1
x3
)
(
x2
x3
)
⟶
wsbc
x0
(
x1
x3
)
⟶
wsbc
x0
(
x2
x3
)
(proof)
Theorem
ax_frege54c
:
∀ x0 :
ι → ο
.
wceq
x0
x0
(proof)