Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
639a4..
PUf9C..
/
df5da..
vout
PrCit..
/
e613e..
3.94 bars
TMKD2..
/
a16f9..
ownership of
e488c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMSUz..
/
79f36..
ownership of
558e0..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMgj..
/
07564..
ownership of
50015..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMVQb..
/
f2b1c..
ownership of
0efba..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJk7..
/
0c998..
ownership of
166d0..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLLs..
/
9c76f..
ownership of
77dbd..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMaRc..
/
8c955..
ownership of
6a935..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMHhS..
/
ef873..
ownership of
ea6ff..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMQmK..
/
a371a..
ownership of
da3b9..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGvb..
/
10d48..
ownership of
dac5c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMVvB..
/
9ca34..
ownership of
72ea6..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPxj..
/
c0321..
ownership of
d3fbe..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMW4c..
/
aa5fe..
ownership of
77ee8..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUEy..
/
81d48..
ownership of
4da1c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMSGE..
/
5d317..
ownership of
1b508..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJCD..
/
a5d70..
ownership of
47f88..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMW9G..
/
c047f..
ownership of
92c81..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcxo..
/
11630..
ownership of
82000..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMQUy..
/
3a005..
ownership of
28148..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMV6D..
/
e2571..
ownership of
f7016..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWaM..
/
78388..
ownership of
13005..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMH1j..
/
4c8fb..
ownership of
b62c9..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLaJ..
/
4ea95..
ownership of
9b26d..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMRVw..
/
a3217..
ownership of
68f81..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMU7a..
/
1e1a3..
ownership of
8698a..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMHuv..
/
3d672..
ownership of
cb75c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMZ3r..
/
c151a..
ownership of
185e6..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPYN..
/
633e6..
ownership of
7ee94..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUbqv..
/
c69c2..
doc published by
Pr4zB..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Param
ordsucc
ordsucc
:
ι
→
ι
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
UPair
UPair
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Known
9c223..
equip_ordsucc_remove1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
equip
x0
(
ordsucc
x1
)
⟶
equip
(
setminus
x0
(
Sing
x2
)
)
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Param
binunion
binunion
:
ι
→
ι
→
ι
Known
setminus_binunion
setminus_binunion
:
∀ x0 x1 x2 .
setminus
x0
(
binunion
x1
x2
)
=
setminus
(
setminus
x0
x1
)
x2
Known
cbaf1..
:
∀ x0 x1 .
UPair
x0
x1
=
binunion
(
Sing
x0
)
(
Sing
x1
)
Theorem
185e6..
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
equip
x0
(
ordsucc
(
ordsucc
x1
)
)
⟶
equip
(
setminus
x0
(
UPair
x2
x3
)
)
x1
(proof)
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Known
1aece..
:
∀ x0 x1 x2 x3 x4 .
x4
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
⟶
∀ x5 :
ι → ο
.
x5
x0
⟶
x5
x1
⟶
x5
x2
⟶
x5
x3
⟶
x5
x4
Theorem
8698a..
:
∀ x0 x1 x2 x3 .
∀ x4 :
ι → ο
.
x4
x0
⟶
x4
x1
⟶
x4
x2
⟶
x4
x3
⟶
∀ x5 .
x5
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
⟶
x4
x5
(proof)
Known
3cea6..
:
∀ x0 x1 x2 x3 x4 x5 .
x5
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
⟶
∀ x6 :
ι → ο
.
x6
x0
⟶
x6
x1
⟶
x6
x2
⟶
x6
x3
⟶
x6
x4
⟶
x6
x5
Theorem
9b26d..
:
∀ x0 x1 x2 x3 x4 .
∀ x5 :
ι → ο
.
x5
x0
⟶
x5
x1
⟶
x5
x2
⟶
x5
x3
⟶
x5
x4
⟶
∀ x6 .
x6
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
⟶
x5
x6
(proof)
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Theorem
13005..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
atleastp
x0
(
prim5
x0
x1
)
(proof)
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
d2050..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
equip
x0
(
prim5
x0
x1
)
(proof)
Param
omega
omega
:
ι
Definition
finite
finite
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
equip
x0
x2
)
⟶
x1
)
⟶
x1
Definition
u1
:=
1
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_1
nat_1
:
nat_p
1
Known
5169f..
equip_Sing_1
:
∀ x0 .
equip
(
Sing
x0
)
u1
Theorem
28148..
Sing_finite
:
∀ x0 .
finite
(
Sing
x0
)
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
UPairE
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
6cd03..
:
∀ x0 x1 .
x1
∈
x0
⟶
Sing
x1
⊆
x0
Known
UPairI1
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
Definition
u2
:=
ordsucc
u1
Known
nat_2
nat_2
:
nat_p
2
Known
ced33..
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
equip
(
UPair
x0
x1
)
u2
Theorem
92c81..
:
∀ x0 x1 .
finite
(
UPair
x0
x1
)
(proof)
Known
bijE
bijE
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
∀ x3 : ο .
(
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x1
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
x2
x6
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
PigeonHole_nat_bij
PigeonHole_nat_bij
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
x0
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
bij
x0
x0
x1
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Theorem
1b508..
:
∀ x0 x1 .
finite
x0
⟶
atleastp
x1
x0
⟶
x0
⊆
x1
⟶
x0
=
x1
(proof)
Known
inj_comp
inj_comp
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι → ι
.
inj
x0
x1
x3
⟶
inj
x1
x2
x4
⟶
inj
x0
x2
(
λ x5 .
x4
(
x3
x5
)
)
Theorem
77ee8..
:
∀ x0 x1 x2 .
∀ x3 :
ι → ι
.
nat_p
x0
⟶
equip
x1
x0
⟶
equip
x2
x0
⟶
inj
x1
x2
x3
⟶
bij
x1
x2
x3
(proof)
Definition
u3
:=
ordsucc
u2
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
ap
ap
:
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
cases_3
cases_3
:
∀ x0 .
x0
∈
3
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
x0
Known
tuple_3_0_eq
tuple_3_0_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
0
=
x0
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
PowerI
PowerI
:
∀ x0 x1 .
x1
⊆
x0
⟶
x1
∈
prim4
x0
Known
In_0_3
In_0_3
:
0
∈
3
Known
In_1_3
In_1_3
:
1
∈
3
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Known
tuple_3_1_eq
tuple_3_1_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
1
=
x1
Known
In_2_3
In_2_3
:
2
∈
3
Known
neq_0_2
neq_0_2
:
0
=
2
⟶
∀ x0 : ο .
x0
Known
tuple_3_2_eq
tuple_3_2_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
2
=
x2
Known
neq_1_2
neq_1_2
:
1
=
2
⟶
∀ x0 : ο .
x0
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
eq_2_UPair01
eq_2_UPair01
:
2
=
UPair
0
1
Known
UPairI2
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
PowerE
PowerE
:
∀ x0 x1 .
x1
∈
prim4
x0
⟶
x1
⊆
x0
Known
In_0_1
In_0_1
:
0
∈
1
Known
In_0_2
In_0_2
:
0
∈
2
Theorem
72ea6..
:
bij
u3
{x0 ∈
prim4
u3
|
equip
x0
u2
}
(
ap
(
lam
3
(
λ x0 .
If_i
(
x0
=
0
)
(
UPair
0
u1
)
(
If_i
(
x0
=
1
)
(
UPair
0
u2
)
(
UPair
u1
u2
)
)
)
)
)
(proof)
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Param
inv
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Known
surj_rinv
surj_rinv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
∀ x3 .
x3
∈
x1
⟶
and
(
inv
x0
x2
x3
∈
x0
)
(
x2
(
inv
x0
x2
x3
)
=
x3
)
Known
bij_inv
bij_inv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
bij
x1
x0
(
inv
x0
x2
)
Theorem
da3b9..
:
∀ x0 .
equip
x0
u3
⟶
equip
{x1 ∈
prim4
x0
|
equip
x1
u2
}
u3
(proof)
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Theorem
6a935..
:
∀ x0 x1 x2 .
SetAdjoin
(
UPair
x0
x1
)
x2
⊆
SetAdjoin
(
UPair
x0
x2
)
x1
(proof)
Theorem
166d0..
:
∀ x0 x1 x2 .
SetAdjoin
(
UPair
x0
x1
)
x2
=
SetAdjoin
(
UPair
x0
x2
)
x1
(proof)
Known
binunion_asso
binunion_asso
:
∀ x0 x1 x2 .
binunion
x0
(
binunion
x1
x2
)
=
binunion
(
binunion
x0
x1
)
x2
Known
binunion_com
binunion_com
:
∀ x0 x1 .
binunion
x0
x1
=
binunion
x1
x0
Theorem
50015..
:
∀ x0 x1 x2 x3 .
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
=
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x3
)
x2
(proof)
Theorem
e488c..
:
∀ x0 x1 x2 x3 x4 .
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
=
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x4
)
x2
)
x3
(proof)