Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr9ob..
/
795ba..
PUf14..
/
80c75..
vout
Pr9ob..
/
d0ce6..
723.92 bars
PUN4z..
/
e726a..
signature published by
PrCmT..
Import Signature
a04d9..
Param
cfd8e..
nat_p
:
ι
→
ο
Known
457a7..
nat_0
:
nat_p
0
Known
57e94..
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
ecdce..
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
1e160..
nat_complete_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
175e2..
nat_inv_impred
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
4f416..
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
Known
03b87..
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
672d0..
nat_1
:
nat_p
1
Known
9112e..
nat_2
:
nat_p
2
Known
e5542..
neq_1_2
:
1
=
2
⟶
∀ x0 : ο .
x0
Known
2949c..
neq_2_1
:
2
=
1
⟶
∀ x0 : ο .
x0
Known
133bb..
nat_3
:
nat_p
3
Known
69ffc..
nat_4
:
nat_p
4
Known
b84b2..
nat_5
:
nat_p
5
Known
b4ec6..
nat_6
:
nat_p
6
Known
86ad8..
nat_7
:
nat_p
7
Known
f9312..
nat_8
:
nat_p
8
Known
356a4..
nat_9
:
nat_p
9
Known
cd262..
nat_10
:
nat_p
10
Known
60602..
nat_11
:
nat_p
11
Known
a6dc0..
nat_12
:
nat_p
12
Known
74108..
nat_13
:
nat_p
13
Known
a8824..
nat_16
:
nat_p
16
Known
a3720..
nat_17
:
nat_p
17
Known
9f78a..
In_0_6
:
0
∈
6
Known
a8f5a..
In_2_6
:
2
∈
6
Known
9f463..
In_3_6
:
3
∈
6
Known
5d38f..
In_4_6
:
4
∈
6
Known
6d1dd..
In_5_6
:
5
∈
6
Known
799b0..
neq_3_0
:
3
=
0
⟶
∀ x0 : ο .
x0
Known
8e4c7..
neq_3_1
:
3
=
1
⟶
∀ x0 : ο .
x0
Known
46727..
neq_3_2
:
3
=
2
⟶
∀ x0 : ο .
x0
Known
dbfe9..
neq_4_0
:
4
=
0
⟶
∀ x0 : ο .
x0
Known
bbd62..
neq_4_1
:
4
=
1
⟶
∀ x0 : ο .
x0
Known
0a09e..
neq_4_2
:
4
=
2
⟶
∀ x0 : ο .
x0
Known
2a569..
neq_4_3
:
4
=
3
⟶
∀ x0 : ο .
x0
Known
29ce2..
neq_5_0
:
5
=
0
⟶
∀ x0 : ο .
x0
Known
cdb67..
neq_5_1
:
5
=
1
⟶
∀ x0 : ο .
x0
Known
72066..
neq_5_2
:
5
=
2
⟶
∀ x0 : ο .
x0
Known
c26bb..
neq_5_3
:
5
=
3
⟶
∀ x0 : ο .
x0
Known
20c3f..
neq_5_4
:
5
=
4
⟶
∀ x0 : ο .
x0
Known
ed34a..
cases_6
:
∀ x0 .
x0
∈
6
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
x0
Param
76c4c..
If_i
:
ο
→
ι
→
ι
→
ι
Known
a9abd..
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
a93c2..
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Param
dc313..
UPair
:
ι
→
ι
→
ι
Known
e67fc..
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
bf364..
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
Known
a0a5b..
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
Param
b7dfc..
Sing
:
ι
→
ι
Known
2f93b..
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
3b0dd..
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Param
e1498..
binunion
:
ι
→
ι
→
ι
Known
e43c8..
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
95953..
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
1ceeb..
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Def
5bdda..
SetAdjoin
:
ι
→
ι
→
ι
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Known
bed33..
binunion_com
:
∀ x0 x1 .
binunion
x0
x1
=
binunion
x1
x0
Known
d64da..
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Param
24134..
famunion
:
ι
→
(
ι
→
ι
) →
ι
Known
e4f49..
famunionI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
x1
x2
⟶
x3
∈
famunion
x0
x1
Known
ede6e..
famunionE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
∈
x1
x4
)
⟶
x3
)
⟶
x3
Known
56202..
famunionE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
∈
x1
x4
⟶
x3
)
⟶
x3
Param
7008e..
Sep
:
ι
→
(
ι
→
ο
) →
ι
Known
147a6..
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
00899..
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
6399b..
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
10422..
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
c17d4..
Sep_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
⊆
x0
Param
9bdb5..
ReplSep
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
ι
Known
aa7b2..
ReplSepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
x1
x3
⟶
x2
x3
∈
ReplSep
x0
x1
x2
Known
063ce..
ReplSepE_impred
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
ReplSep
x0
x1
x2
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
Param
2c68d..
binintersect
:
ι
→
ι
→
ι
Known
9081a..
binintersectI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
x1
⟶
x2
∈
binintersect
x0
x1
Known
ca063..
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
51005..
binintersectE1
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x0
Known
599de..
binintersectE2
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x1
Known
ea8a1..
binintersect_com
:
∀ x0 x1 .
binintersect
x0
x1
=
binintersect
x1
x0
Param
913da..
setminus
:
ι
→
ι
→
ι
Known
80db6..
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
71763..
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
d74ba..
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Known
36b27..
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
66f98..
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
7bfd4..
In_irref
:
∀ x0 .
nIn
x0
x0
Known
344f3..
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
367d8..
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
2be6b..
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
3849f..
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
346ee..
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
Known
4869a..
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
Known
32724..
In_1_6
:
1
∈
6
Known
251f3..
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Known
4c2c9..
nat_ordsucc_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Known
f9480..
neq_6_0
:
6
=
0
⟶
∀ x0 : ο .
x0
Known
799bd..
neq_6_1
:
6
=
1
⟶
∀ x0 : ο .
x0
Known
2865c..
neq_6_2
:
6
=
2
⟶
∀ x0 : ο .
x0
Known
1ffa2..
neq_6_3
:
6
=
3
⟶
∀ x0 : ο .
x0
Known
b3e48..
neq_6_4
:
6
=
4
⟶
∀ x0 : ο .
x0
Known
f4436..
neq_6_5
:
6
=
5
⟶
∀ x0 : ο .
x0