Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrS7G..
/
8bed3..
PUQmA..
/
e5577..
vout
PrS7G..
/
7101d..
0.00 bars
TMHS2..
/
c48bf..
ownership of
c698c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVbn..
/
0d333..
ownership of
70a6e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXou..
/
ab21b..
ownership of
60320..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGgE..
/
dab02..
ownership of
c313e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNyH..
/
1eb9e..
ownership of
89704..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMc4Z..
/
faee6..
ownership of
fa121..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKmm..
/
13e29..
ownership of
13e07..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMauE..
/
8a752..
ownership of
f699c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMm2..
/
0b4e6..
ownership of
61f1b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXM3..
/
74854..
ownership of
0ff55..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFmT..
/
b8919..
ownership of
bda2b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZEj..
/
ab103..
ownership of
1c03d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUbyS..
/
1dcfe..
doc published by
PrGxv..
Param
e5b72..
:
ι
→
ι
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Known
b2421..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
⟶
prim1
x2
(
1216a..
x0
x1
)
Known
b21da..
:
∀ x0 x1 .
prim1
x1
(
e5b72..
x0
)
⟶
Subq
x1
x0
Known
ac5c1..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
x1
x2
Known
d129e..
:
∀ x0 .
∀ x1 :
ι → ο
.
prim1
(
1216a..
x0
x1
)
(
e5b72..
x0
)
Theorem
bda2b..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
(
e5b72..
x0
)
⟶
prim1
(
x1
x2
)
(
e5b72..
x0
)
)
⟶
(
∀ x2 .
prim1
x2
(
e5b72..
x0
)
⟶
∀ x3 .
prim1
x3
(
e5b72..
x0
)
⟶
Subq
x2
x3
⟶
Subq
(
x1
x2
)
(
x1
x3
)
)
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
prim1
x3
(
e5b72..
x0
)
)
(
x1
x3
=
x3
)
⟶
x2
)
⟶
x2
(proof)
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Known
3daee..
:
∀ x0 x1 .
Subq
x1
x0
⟶
prim1
x1
(
e5b72..
x0
)
Known
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
61f1b..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
⟶
∀ x3 .
prim1
x3
(
e5b72..
x0
)
⟶
prim1
(
94f9e..
x3
x2
)
(
e5b72..
x1
)
(proof)
Known
696c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
94f9e..
x0
x1
)
Theorem
13e07..
:
∀ x0 :
ι → ι
.
∀ x1 x2 .
Subq
x1
x2
⟶
Subq
(
94f9e..
x1
x0
)
(
94f9e..
x2
x0
)
(proof)
Param
1ad11..
:
ι
→
ι
→
ι
Known
dcf34..
:
∀ x0 x1 .
Subq
(
1ad11..
x0
x1
)
x0
Theorem
89704..
:
∀ x0 x1 .
prim1
(
1ad11..
x0
x1
)
(
e5b72..
x0
)
(proof)
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
017d4..
:
∀ x0 x1 x2 .
prim1
x2
(
1ad11..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
nIn
x2
x1
)
Known
753c4..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
nIn
x2
x1
⟶
prim1
x2
(
1ad11..
x0
x1
)
Theorem
60320..
:
∀ x0 x1 x2 .
Subq
x1
x2
⟶
Subq
(
1ad11..
x0
x2
)
(
1ad11..
x0
x1
)
(proof)
Definition
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Param
c2e41..
:
ι
→
ι
→
ο
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Definition
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
prim1
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Known
c6ad4..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
c2e41..
x0
x1
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
f775d..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
∀ x3 .
prim1
x3
x0
⟶
inv
x0
x2
(
x2
x3
)
=
x3
Known
26c23..
:
∀ x0 x1 x2 .
prim1
x2
(
1ad11..
x0
x1
)
⟶
prim1
x2
x0
Known
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
c698c..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
inj
x0
x1
x2
⟶
inj
x1
x0
x3
⟶
c2e41..
x0
x1
(proof)