Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
220ca..
PUNS2..
/
08b8f..
vout
PrCit..
/
f5c12..
6.00 bars
TMZDh..
/
d0655..
ownership of
5b6f1..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMULX..
/
c81a6..
ownership of
3e354..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMXks..
/
869f2..
ownership of
8cfc8..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMTo9..
/
b5ebb..
ownership of
35283..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMbzA..
/
10c2c..
ownership of
678e0..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMKDB..
/
2be0b..
ownership of
67ce4..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMbHq..
/
ffcc4..
ownership of
1a450..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMHuK..
/
cb6a0..
ownership of
6ec1a..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMSa3..
/
e60fa..
ownership of
60586..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMatp..
/
46548..
ownership of
97adf..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
PrRGS..
/
04a42..
0.00 bars
PrE35..
/
817db..
0.00 bars
Pr9pj..
/
266ff..
0.00 bars
PrA5c..
/
d718f..
0.00 bars
PrKix..
/
a3e62..
0.00 bars
PrB8m..
/
ca2e1..
0.00 bars
PrS2B..
/
889af..
0.00 bars
Pr8Ky..
/
17212..
0.00 bars
PUXG8..
/
4f628..
doc published by
Pr4zB..
Param
nat_p
nat_p
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
ChurchNum_ii_6
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
(
x0
(
x0
(
x0
x1
)
)
)
)
)
Definition
ChurchNum2
:=
λ x0 :
ι → ι
.
λ x1 .
x0
(
x0
x1
)
Known
f3785..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
x1
(
x0
x2
)
)
⟶
∀ x2 .
x1
x2
⟶
x1
(
ChurchNum_ii_6
ChurchNum2
x0
x2
)
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Definition
ChurchNum_ii_4
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
(
x0
x1
)
)
)
Known
3ae46..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
x1
(
x0
x2
)
)
⟶
∀ x2 .
x1
x2
⟶
x1
(
ChurchNum_ii_4
ChurchNum2
x0
x2
)
Known
nat_3
nat_3
:
nat_p
3
Theorem
60586..
:
nat_p
83
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
73d5c..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x0
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x0
x3
)
=
x0
(
x2
x3
)
)
⟶
∀ x3 .
x1
x3
⟶
x2
(
ChurchNum_ii_6
ChurchNum2
x0
x3
)
=
ChurchNum_ii_6
ChurchNum2
x0
(
x2
x3
)
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_2
nat_2
:
nat_p
2
Known
nat_1
nat_1
:
nat_p
1
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
1a450..
:
add_nat
83
66
=
149
(proof)
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Param
TwoRamseyProp_atleastp
:
ι
→
ι
→
ι
→
ο
Known
97c7e..
:
∀ x0 x1 x2 x3 .
nat_p
x2
⟶
nat_p
x3
⟶
TwoRamseyProp_atleastp
(
ordsucc
x0
)
x1
x2
⟶
TwoRamseyProp_atleastp
x0
(
ordsucc
x1
)
x3
⟶
TwoRamseyProp
(
ordsucc
x0
)
(
ordsucc
x1
)
(
ordsucc
(
add_nat
x2
x3
)
)
Known
ad171..
:
nat_p
66
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Known
TwoRamseyProp_atleastp_atleastp
:
∀ x0 x1 x2 x3 x4 .
TwoRamseyProp
x0
x2
x4
⟶
atleastp
x1
x0
⟶
atleastp
x3
x2
⟶
TwoRamseyProp_atleastp
x1
x3
x4
Known
TwoRamseyProp_5_5_83
:
TwoRamseyProp
5
5
83
Known
atleastp_ref
:
∀ x0 .
atleastp
x0
x0
Known
TwoRamseyProp_4_6_66
:
TwoRamseyProp
4
6
66
Theorem
TwoRamseyProp_5_6_150
:
TwoRamseyProp
5
6
150
(proof)
Definition
ChurchNum_ii_8
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
(
x0
(
x0
(
x0
(
x0
(
x0
x1
)
)
)
)
)
)
)
Definition
ChurchNum_ii_5
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
(
x0
(
x0
x1
)
)
)
)
Definition
ChurchNum_ii_3
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
x1
)
)
Known
b8288..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
x0
x2
)
)
⟶
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
ChurchNum_ii_6
ChurchNum2
x0
x2
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
80fa6..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
x0
x2
)
)
⟶
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
ChurchNum_ii_5
ChurchNum2
x0
x2
)
Known
9ba2f..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
x0
x2
)
)
⟶
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
ChurchNum_ii_3
ChurchNum2
x0
x2
)
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Theorem
8cfc8..
:
150
∈
ChurchNum_ii_8
ChurchNum2
ordsucc
0
(proof)
Known
46dcf..
:
∀ x0 x1 x2 x3 .
atleastp
x2
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Param
exp_nat
exp_nat
:
ι
→
ι
→
ι
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
bbc1b..
:
exp_nat
2
8
=
ChurchNum_ii_8
ChurchNum2
ordsucc
0
Known
nat_In_atleastp
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
atleastp
x1
x0
Known
28496..
:
nat_p
256
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
293d3..
:
∀ x0 .
nat_p
x0
⟶
equip
(
prim4
x0
)
(
exp_nat
2
x0
)
Known
nat_8
nat_8
:
nat_p
8
Theorem
TwoRamseyProp_5_6_Power_8
TwoRamseyProp_5_6_Power_8
:
TwoRamseyProp
5
6
(
prim4
8
)
(proof)