Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../220ca..
PUNS2../08b8f..
vout
PrCit../f5c12.. 6.00 bars
TMZDh../d0655.. ownership of 5b6f1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMULX../c81a6.. ownership of 3e354.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXks../869f2.. ownership of 8cfc8.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTo9../b5ebb.. ownership of 35283.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMbzA../10c2c.. ownership of 678e0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKDB../2be0b.. ownership of 67ce4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMbHq../ffcc4.. ownership of 1a450.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHuK../cb6a0.. ownership of 6ec1a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSa3../e60fa.. ownership of 60586.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMatp../46548.. ownership of 97adf.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PrRGS../04a42.. 0.00 bars
PrE35../817db.. 0.00 bars
Pr9pj../266ff.. 0.00 bars
PrA5c../d718f.. 0.00 bars
PrKix../a3e62.. 0.00 bars
PrB8m../ca2e1.. 0.00 bars
PrS2B../889af.. 0.00 bars
Pr8Ky../17212.. 0.00 bars
PUXG8../4f628.. doc published by Pr4zB..
Param nat_pnat_p : ιο
Param ordsuccordsucc : ιι
Definition ChurchNum_ii_6 := λ x0 : (ι → ι)ι → ι . λ x1 : ι → ι . x0 (x0 (x0 (x0 (x0 (x0 x1)))))
Definition ChurchNum2 := λ x0 : ι → ι . λ x1 . x0 (x0 x1)
Known f3785.. : ∀ x0 : ι → ι . ∀ x1 : ι → ο . (∀ x2 . x1 x2x1 (x0 x2))∀ x2 . x1 x2x1 (ChurchNum_ii_6 ChurchNum2 x0 x2)
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Definition ChurchNum_ii_4 := λ x0 : (ι → ι)ι → ι . λ x1 : ι → ι . x0 (x0 (x0 (x0 x1)))
Known 3ae46.. : ∀ x0 : ι → ι . ∀ x1 : ι → ο . (∀ x2 . x1 x2x1 (x0 x2))∀ x2 . x1 x2x1 (ChurchNum_ii_4 ChurchNum2 x0 x2)
Known nat_3nat_3 : nat_p 3
Theorem 60586.. : nat_p 83 (proof)
Param add_natadd_nat : ιιι
Known 73d5c.. : ∀ x0 : ι → ι . ∀ x1 : ι → ο . ∀ x2 : ι → ι . (∀ x3 . x1 x3x1 (x0 x3))(∀ x3 . x1 x3x2 (x0 x3) = x0 (x2 x3))∀ x3 . x1 x3x2 (ChurchNum_ii_6 ChurchNum2 x0 x3) = ChurchNum_ii_6 ChurchNum2 x0 (x2 x3)
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known nat_2nat_2 : nat_p 2
Known nat_1nat_1 : nat_p 1
Known nat_0nat_0 : nat_p 0
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Theorem 1a450.. : add_nat 83 66 = 149 (proof)
Param TwoRamseyPropTwoRamseyProp : ιιιο
Param TwoRamseyProp_atleastp : ιιιο
Known 97c7e.. : ∀ x0 x1 x2 x3 . nat_p x2nat_p x3TwoRamseyProp_atleastp (ordsucc x0) x1 x2TwoRamseyProp_atleastp x0 (ordsucc x1) x3TwoRamseyProp (ordsucc x0) (ordsucc x1) (ordsucc (add_nat x2 x3))
Known ad171.. : nat_p 66
Param atleastpatleastp : ιιο
Known TwoRamseyProp_atleastp_atleastp : ∀ x0 x1 x2 x3 x4 . TwoRamseyProp x0 x2 x4atleastp x1 x0atleastp x3 x2TwoRamseyProp_atleastp x1 x3 x4
Known TwoRamseyProp_5_5_83 : TwoRamseyProp 5 5 83
Known atleastp_ref : ∀ x0 . atleastp x0 x0
Known TwoRamseyProp_4_6_66 : TwoRamseyProp 4 6 66
Theorem TwoRamseyProp_5_6_150 : TwoRamseyProp 5 6 150 (proof)
Definition ChurchNum_ii_8 := λ x0 : (ι → ι)ι → ι . λ x1 : ι → ι . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1)))))))
Definition ChurchNum_ii_5 := λ x0 : (ι → ι)ι → ι . λ x1 : ι → ι . x0 (x0 (x0 (x0 (x0 x1))))
Definition ChurchNum_ii_3 := λ x0 : (ι → ι)ι → ι . λ x1 : ι → ι . x0 (x0 (x0 x1))
Known b8288.. : ∀ x0 : ι → ι . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x3 x2x1 x3 (x0 x2))∀ x2 x3 . x1 x3 x2x1 x3 (ChurchNum_ii_6 ChurchNum2 x0 x2)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known 80fa6.. : ∀ x0 : ι → ι . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x3 x2x1 x3 (x0 x2))∀ x2 x3 . x1 x3 x2x1 x3 (ChurchNum_ii_5 ChurchNum2 x0 x2)
Known 9ba2f.. : ∀ x0 : ι → ι . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x3 x2x1 x3 (x0 x2))∀ x2 x3 . x1 x3 x2x1 x3 (ChurchNum_ii_3 ChurchNum2 x0 x2)
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Theorem 8cfc8.. : 150ChurchNum_ii_8 ChurchNum2 ordsucc 0 (proof)
Known 46dcf.. : ∀ x0 x1 x2 x3 . atleastp x2 x3TwoRamseyProp x0 x1 x2TwoRamseyProp x0 x1 x3
Param exp_natexp_nat : ιιι
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known bbc1b.. : exp_nat 2 8 = ChurchNum_ii_8 ChurchNum2 ordsucc 0
Known nat_In_atleastp : ∀ x0 . nat_p x0∀ x1 . x1x0atleastp x1 x0
Known 28496.. : nat_p 256
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known 293d3.. : ∀ x0 . nat_p x0equip (prim4 x0) (exp_nat 2 x0)
Known nat_8nat_8 : nat_p 8
Theorem TwoRamseyProp_5_6_Power_8TwoRamseyProp_5_6_Power_8 : TwoRamseyProp 5 6 (prim4 8) (proof)