Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrDbY..
/
a6bec..
PUdH7..
/
d2b36..
vout
PrDbY..
/
acd87..
0.10 bars
TMFnr..
/
3fd14..
ownership of
c800d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU1M..
/
4fe25..
ownership of
b8458..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXAM..
/
4687a..
ownership of
96052..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWhJ..
/
8fc42..
ownership of
3c02e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRVj..
/
a1940..
ownership of
cac0b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFm3..
/
868f7..
ownership of
8662d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRiH..
/
5e08d..
ownership of
e5c91..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TML95..
/
30dba..
ownership of
df8b5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMctC..
/
5c1e0..
ownership of
6bab6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRG3..
/
ca863..
ownership of
028d3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXJV..
/
b7a90..
ownership of
263e4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMS5R..
/
dd0fc..
ownership of
c0753..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYHy..
/
edb5f..
ownership of
a0d75..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcG8..
/
80b47..
ownership of
fd93e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGBa..
/
91dff..
ownership of
0d7e3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc9a..
/
167d8..
ownership of
a4b57..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSb8..
/
c4b66..
ownership of
bf04f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXCy..
/
3136f..
ownership of
4dd95..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFQU..
/
5a594..
ownership of
1cb98..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcPJ..
/
4e659..
ownership of
c6b4f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWsD..
/
a3fa1..
ownership of
353e3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXUZ..
/
f00ce..
ownership of
3a3b9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTYh..
/
f7944..
ownership of
41896..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTXF..
/
7fb5c..
ownership of
1079d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQjC..
/
8636a..
ownership of
71e90..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFqX..
/
b5cde..
ownership of
5d84d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUeL..
/
5ca5d..
ownership of
7f55c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJLt..
/
4e644..
ownership of
70f20..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaEw..
/
35337..
ownership of
2de4f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYSY..
/
e6376..
ownership of
2f92d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFrm..
/
fde81..
ownership of
e3c0a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYT6..
/
dc7c3..
ownership of
d6741..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHFy..
/
45c99..
ownership of
8100a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXEu..
/
4effb..
ownership of
9fc0b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXqS..
/
58995..
ownership of
9abe8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGzM..
/
561f5..
ownership of
38e35..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUUBK..
/
7ac68..
doc published by
PrCmT..
Known
df_lnop__df_bdop__df_unop__df_hmop__df_nmfn__df_nlfn__df_cnfn__df_lnfn__df_adjh__df_bra__df_kb__df_leop__df_eigvec__df_eigval__df_spec__df_st__df_hst__df_cv
:
∀ x0 : ο .
(
wceq
clo
(
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
cfv
(
co
(
co
(
cv
x2
)
(
cv
x3
)
csm
)
(
cv
x4
)
cva
)
(
cv
x1
)
)
(
co
(
co
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
csm
)
(
cfv
(
cv
x4
)
(
cv
x1
)
)
cva
)
)
(
λ x4 .
chil
)
)
(
λ x3 .
chil
)
)
(
λ x2 .
cc
)
)
(
λ x1 .
co
chil
chil
cmap
)
)
⟶
wceq
cbo
(
crab
(
λ x1 .
wbr
(
cfv
(
cv
x1
)
cnop
)
cpnf
clt
)
(
λ x1 .
clo
)
)
⟶
wceq
cuo
(
cab
(
λ x1 .
wa
(
wfo
chil
chil
(
cv
x1
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
csp
)
(
co
(
cv
x2
)
(
cv
x3
)
csp
)
)
(
λ x3 .
chil
)
)
(
λ x2 .
chil
)
)
)
)
⟶
wceq
cho
(
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
csp
)
(
co
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cv
x3
)
csp
)
)
(
λ x3 .
chil
)
)
(
λ x2 .
chil
)
)
(
λ x1 .
co
chil
chil
cmap
)
)
⟶
wceq
cnmf
(
cmpt
(
λ x1 .
co
cc
chil
cmap
)
(
λ x1 .
csup
(
cab
(
λ x2 .
wrex
(
λ x3 .
wa
(
wbr
(
cfv
(
cv
x3
)
cno
)
c1
cle
)
(
wceq
(
cv
x2
)
(
cfv
(
cfv
(
cv
x3
)
(
cv
x1
)
)
cabs
)
)
)
(
λ x3 .
chil
)
)
)
cxr
clt
)
)
⟶
wceq
cnl
(
cmpt
(
λ x1 .
co
cc
chil
cmap
)
(
λ x1 .
cima
(
ccnv
(
cv
x1
)
)
(
csn
cc0
)
)
)
⟶
wceq
ccnfn
(
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wral
(
λ x5 .
wbr
(
cfv
(
co
(
cv
x5
)
(
cv
x2
)
cmv
)
cno
)
(
cv
x4
)
clt
⟶
wbr
(
cfv
(
co
(
cfv
(
cv
x5
)
(
cv
x1
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cmin
)
cabs
)
(
cv
x3
)
clt
)
(
λ x5 .
chil
)
)
(
λ x4 .
crp
)
)
(
λ x3 .
crp
)
)
(
λ x2 .
chil
)
)
(
λ x1 .
co
cc
chil
cmap
)
)
⟶
wceq
clf
(
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
cfv
(
co
(
co
(
cv
x2
)
(
cv
x3
)
csm
)
(
cv
x4
)
cva
)
(
cv
x1
)
)
(
co
(
co
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
cmul
)
(
cfv
(
cv
x4
)
(
cv
x1
)
)
caddc
)
)
(
λ x4 .
chil
)
)
(
λ x3 .
chil
)
)
(
λ x2 .
cc
)
)
(
λ x1 .
co
cc
chil
cmap
)
)
⟶
wceq
cado
(
copab
(
λ x1 x2 .
w3a
(
wf
chil
chil
(
cv
x1
)
)
(
wf
chil
chil
(
cv
x2
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cv
x4
)
csp
)
(
co
(
cv
x3
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
csp
)
)
(
λ x4 .
chil
)
)
(
λ x3 .
chil
)
)
)
)
⟶
wceq
cbr
(
cmpt
(
λ x1 .
chil
)
(
λ x1 .
cmpt
(
λ x2 .
chil
)
(
λ x2 .
co
(
cv
x2
)
(
cv
x1
)
csp
)
)
)
⟶
wceq
ck
(
cmpt2
(
λ x1 x2 .
chil
)
(
λ x1 x2 .
chil
)
(
λ x1 x2 .
cmpt
(
λ x3 .
chil
)
(
λ x3 .
co
(
co
(
cv
x3
)
(
cv
x2
)
csp
)
(
cv
x1
)
csm
)
)
)
⟶
wceq
cleo
(
copab
(
λ x1 x2 .
wa
(
wcel
(
co
(
cv
x2
)
(
cv
x1
)
chod
)
cho
)
(
wral
(
λ x3 .
wbr
cc0
(
co
(
cfv
(
cv
x3
)
(
co
(
cv
x2
)
(
cv
x1
)
chod
)
)
(
cv
x3
)
csp
)
cle
)
(
λ x3 .
chil
)
)
)
)
⟶
wceq
cei
(
cmpt
(
λ x1 .
co
chil
chil
cmap
)
(
λ x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wceq
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
co
(
cv
x3
)
(
cv
x2
)
csm
)
)
(
λ x3 .
cc
)
)
(
λ x2 .
cdif
chil
c0h
)
)
)
⟶
wceq
cel
(
cmpt
(
λ x1 .
co
chil
chil
cmap
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cei
)
(
λ x2 .
co
(
co
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cv
x2
)
csp
)
(
co
(
cfv
(
cv
x2
)
cno
)
c2
cexp
)
cdiv
)
)
)
⟶
wceq
cspc
(
cmpt
(
λ x1 .
co
chil
chil
cmap
)
(
λ x1 .
crab
(
λ x2 .
wn
(
wf1
chil
chil
(
co
(
cv
x1
)
(
co
(
cv
x2
)
(
cres
cid
chil
)
chot
)
chod
)
)
)
(
λ x2 .
cc
)
)
)
⟶
wceq
cst
(
crab
(
λ x1 .
wa
(
wceq
(
cfv
chil
(
cv
x1
)
)
c1
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wss
(
cv
x2
)
(
cfv
(
cv
x3
)
cort
)
⟶
wceq
(
cfv
(
co
(
cv
x2
)
(
cv
x3
)
chj
)
(
cv
x1
)
)
(
co
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
caddc
)
)
(
λ x3 .
cch
)
)
(
λ x2 .
cch
)
)
)
(
λ x1 .
co
(
co
cc0
c1
cicc
)
cch
cmap
)
)
⟶
wceq
chst
(
crab
(
λ x1 .
wa
(
wceq
(
cfv
(
cfv
chil
(
cv
x1
)
)
cno
)
c1
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wss
(
cv
x2
)
(
cfv
(
cv
x3
)
cort
)
⟶
wa
(
wceq
(
co
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
csp
)
cc0
)
(
wceq
(
cfv
(
co
(
cv
x2
)
(
cv
x3
)
chj
)
(
cv
x1
)
)
(
co
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
cva
)
)
)
(
λ x3 .
cch
)
)
(
λ x2 .
cch
)
)
)
(
λ x1 .
co
chil
cch
cmap
)
)
⟶
wceq
ccv
(
copab
(
λ x1 x2 .
wa
(
wa
(
wcel
(
cv
x1
)
cch
)
(
wcel
(
cv
x2
)
cch
)
)
(
wa
(
wpss
(
cv
x1
)
(
cv
x2
)
)
(
wn
(
wrex
(
λ x3 .
wa
(
wpss
(
cv
x1
)
(
cv
x3
)
)
(
wpss
(
cv
x3
)
(
cv
x2
)
)
)
(
λ x3 .
cch
)
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_lnop
:
wceq
clo
(
crab
(
λ x0 .
wral
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wceq
(
cfv
(
co
(
co
(
cv
x1
)
(
cv
x2
)
csm
)
(
cv
x3
)
cva
)
(
cv
x0
)
)
(
co
(
co
(
cv
x1
)
(
cfv
(
cv
x2
)
(
cv
x0
)
)
csm
)
(
cfv
(
cv
x3
)
(
cv
x0
)
)
cva
)
)
(
λ x3 .
chil
)
)
(
λ x2 .
chil
)
)
(
λ x1 .
cc
)
)
(
λ x0 .
co
chil
chil
cmap
)
)
(proof)
Theorem
df_bdop
:
wceq
cbo
(
crab
(
λ x0 .
wbr
(
cfv
(
cv
x0
)
cnop
)
cpnf
clt
)
(
λ x0 .
clo
)
)
(proof)
Theorem
df_unop
:
wceq
cuo
(
cab
(
λ x0 .
wa
(
wfo
chil
chil
(
cv
x0
)
)
(
wral
(
λ x1 .
wral
(
λ x2 .
wceq
(
co
(
cfv
(
cv
x1
)
(
cv
x0
)
)
(
cfv
(
cv
x2
)
(
cv
x0
)
)
csp
)
(
co
(
cv
x1
)
(
cv
x2
)
csp
)
)
(
λ x2 .
chil
)
)
(
λ x1 .
chil
)
)
)
)
(proof)
Theorem
df_hmop
:
wceq
cho
(
crab
(
λ x0 .
wral
(
λ x1 .
wral
(
λ x2 .
wceq
(
co
(
cv
x1
)
(
cfv
(
cv
x2
)
(
cv
x0
)
)
csp
)
(
co
(
cfv
(
cv
x1
)
(
cv
x0
)
)
(
cv
x2
)
csp
)
)
(
λ x2 .
chil
)
)
(
λ x1 .
chil
)
)
(
λ x0 .
co
chil
chil
cmap
)
)
(proof)
Theorem
df_nmfn
:
wceq
cnmf
(
cmpt
(
λ x0 .
co
cc
chil
cmap
)
(
λ x0 .
csup
(
cab
(
λ x1 .
wrex
(
λ x2 .
wa
(
wbr
(
cfv
(
cv
x2
)
cno
)
c1
cle
)
(
wceq
(
cv
x1
)
(
cfv
(
cfv
(
cv
x2
)
(
cv
x0
)
)
cabs
)
)
)
(
λ x2 .
chil
)
)
)
cxr
clt
)
)
(proof)
Theorem
df_nlfn
:
wceq
cnl
(
cmpt
(
λ x0 .
co
cc
chil
cmap
)
(
λ x0 .
cima
(
ccnv
(
cv
x0
)
)
(
csn
cc0
)
)
)
(proof)
Theorem
df_cnfn
:
wceq
ccnfn
(
crab
(
λ x0 .
wral
(
λ x1 .
wral
(
λ x2 .
wrex
(
λ x3 .
wral
(
λ x4 .
wbr
(
cfv
(
co
(
cv
x4
)
(
cv
x1
)
cmv
)
cno
)
(
cv
x3
)
clt
⟶
wbr
(
cfv
(
co
(
cfv
(
cv
x4
)
(
cv
x0
)
)
(
cfv
(
cv
x1
)
(
cv
x0
)
)
cmin
)
cabs
)
(
cv
x2
)
clt
)
(
λ x4 .
chil
)
)
(
λ x3 .
crp
)
)
(
λ x2 .
crp
)
)
(
λ x1 .
chil
)
)
(
λ x0 .
co
cc
chil
cmap
)
)
(proof)
Theorem
df_lnfn
:
wceq
clf
(
crab
(
λ x0 .
wral
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wceq
(
cfv
(
co
(
co
(
cv
x1
)
(
cv
x2
)
csm
)
(
cv
x3
)
cva
)
(
cv
x0
)
)
(
co
(
co
(
cv
x1
)
(
cfv
(
cv
x2
)
(
cv
x0
)
)
cmul
)
(
cfv
(
cv
x3
)
(
cv
x0
)
)
caddc
)
)
(
λ x3 .
chil
)
)
(
λ x2 .
chil
)
)
(
λ x1 .
cc
)
)
(
λ x0 .
co
cc
chil
cmap
)
)
(proof)
Theorem
df_adjh
:
wceq
cado
(
copab
(
λ x0 x1 .
w3a
(
wf
chil
chil
(
cv
x0
)
)
(
wf
chil
chil
(
cv
x1
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cfv
(
cv
x2
)
(
cv
x0
)
)
(
cv
x3
)
csp
)
(
co
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
csp
)
)
(
λ x3 .
chil
)
)
(
λ x2 .
chil
)
)
)
)
(proof)
Theorem
df_bra
:
wceq
cbr
(
cmpt
(
λ x0 .
chil
)
(
λ x0 .
cmpt
(
λ x1 .
chil
)
(
λ x1 .
co
(
cv
x1
)
(
cv
x0
)
csp
)
)
)
(proof)
Theorem
df_kb
:
wceq
ck
(
cmpt2
(
λ x0 x1 .
chil
)
(
λ x0 x1 .
chil
)
(
λ x0 x1 .
cmpt
(
λ x2 .
chil
)
(
λ x2 .
co
(
co
(
cv
x2
)
(
cv
x1
)
csp
)
(
cv
x0
)
csm
)
)
)
(proof)
Theorem
df_leop
:
wceq
cleo
(
copab
(
λ x0 x1 .
wa
(
wcel
(
co
(
cv
x1
)
(
cv
x0
)
chod
)
cho
)
(
wral
(
λ x2 .
wbr
cc0
(
co
(
cfv
(
cv
x2
)
(
co
(
cv
x1
)
(
cv
x0
)
chod
)
)
(
cv
x2
)
csp
)
cle
)
(
λ x2 .
chil
)
)
)
)
(proof)
Theorem
df_eigvec
:
wceq
cei
(
cmpt
(
λ x0 .
co
chil
chil
cmap
)
(
λ x0 .
crab
(
λ x1 .
wrex
(
λ x2 .
wceq
(
cfv
(
cv
x1
)
(
cv
x0
)
)
(
co
(
cv
x2
)
(
cv
x1
)
csm
)
)
(
λ x2 .
cc
)
)
(
λ x1 .
cdif
chil
c0h
)
)
)
(proof)
Theorem
df_eigval
:
wceq
cel
(
cmpt
(
λ x0 .
co
chil
chil
cmap
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cei
)
(
λ x1 .
co
(
co
(
cfv
(
cv
x1
)
(
cv
x0
)
)
(
cv
x1
)
csp
)
(
co
(
cfv
(
cv
x1
)
cno
)
c2
cexp
)
cdiv
)
)
)
(proof)
Theorem
df_spec
:
wceq
cspc
(
cmpt
(
λ x0 .
co
chil
chil
cmap
)
(
λ x0 .
crab
(
λ x1 .
wn
(
wf1
chil
chil
(
co
(
cv
x0
)
(
co
(
cv
x1
)
(
cres
cid
chil
)
chot
)
chod
)
)
)
(
λ x1 .
cc
)
)
)
(proof)
Theorem
df_st
:
wceq
cst
(
crab
(
λ x0 .
wa
(
wceq
(
cfv
chil
(
cv
x0
)
)
c1
)
(
wral
(
λ x1 .
wral
(
λ x2 .
wss
(
cv
x1
)
(
cfv
(
cv
x2
)
cort
)
⟶
wceq
(
cfv
(
co
(
cv
x1
)
(
cv
x2
)
chj
)
(
cv
x0
)
)
(
co
(
cfv
(
cv
x1
)
(
cv
x0
)
)
(
cfv
(
cv
x2
)
(
cv
x0
)
)
caddc
)
)
(
λ x2 .
cch
)
)
(
λ x1 .
cch
)
)
)
(
λ x0 .
co
(
co
cc0
c1
cicc
)
cch
cmap
)
)
(proof)
Theorem
df_hst
:
wceq
chst
(
crab
(
λ x0 .
wa
(
wceq
(
cfv
(
cfv
chil
(
cv
x0
)
)
cno
)
c1
)
(
wral
(
λ x1 .
wral
(
λ x2 .
wss
(
cv
x1
)
(
cfv
(
cv
x2
)
cort
)
⟶
wa
(
wceq
(
co
(
cfv
(
cv
x1
)
(
cv
x0
)
)
(
cfv
(
cv
x2
)
(
cv
x0
)
)
csp
)
cc0
)
(
wceq
(
cfv
(
co
(
cv
x1
)
(
cv
x2
)
chj
)
(
cv
x0
)
)
(
co
(
cfv
(
cv
x1
)
(
cv
x0
)
)
(
cfv
(
cv
x2
)
(
cv
x0
)
)
cva
)
)
)
(
λ x2 .
cch
)
)
(
λ x1 .
cch
)
)
)
(
λ x0 .
co
chil
cch
cmap
)
)
(proof)
Theorem
df_cv
:
wceq
ccv
(
copab
(
λ x0 x1 .
wa
(
wa
(
wcel
(
cv
x0
)
cch
)
(
wcel
(
cv
x1
)
cch
)
)
(
wa
(
wpss
(
cv
x0
)
(
cv
x1
)
)
(
wn
(
wrex
(
λ x2 .
wa
(
wpss
(
cv
x0
)
(
cv
x2
)
)
(
wpss
(
cv
x2
)
(
cv
x1
)
)
)
(
λ x2 .
cch
)
)
)
)
)
)
(proof)