Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCUp../55a63..
PUWUz../84a8e..
vout
PrCUp../ebbe0.. 0.01 bars
TMUME../43bd4.. ownership of 355d3.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMUuu../bbaa4.. ownership of ae085.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMc1T../02079.. ownership of 27f6a.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMdBt../53a3a.. ownership of 20adc.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMMQu../94865.. ownership of 07ed2.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMcYd../2fe90.. ownership of e28af.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMJ2G../db2ff.. ownership of 8ce93.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMcoX../9f75a.. ownership of 68fe9.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMRPX../fd0ce.. ownership of 1d401.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMXqa../471dd.. ownership of 824b8.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMJxt../e4da6.. ownership of 30df9.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMbFQ../67988.. ownership of defc4.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMJrZ../4953d.. ownership of d9411.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMN2t../67a10.. ownership of a469c.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMGpj../81e67.. ownership of cb7f5.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMYu5../f131c.. ownership of 6da66.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMRda../d694a.. ownership of d4cbb.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMLzB../ecf14.. ownership of 17c3d.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMXFk../6579d.. ownership of 447bb.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMM6B../8c90d.. ownership of ac0c5.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMXxF../c34d1.. ownership of 9f45f.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMR7X../3cbe5.. ownership of b05b9.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMU5G../79781.. ownership of 85c0e.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMJKS../f2f6f.. ownership of 29e85.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMPWG../ea2d9.. ownership of 0ae7a.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMUCY../a9b9e.. ownership of 57512.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMWDk../2948a.. ownership of 85f67.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMJhe../7e6ac.. ownership of ec6ca.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMZmj../13876.. ownership of 2ccf7.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMTdm../e2b8e.. ownership of 4ba26.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMW5X../50a93.. ownership of eb987.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMac6../b3b06.. ownership of d24db.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMHq7../85a63.. ownership of 09271.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMLZq../91a58.. ownership of d7d14.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMdqS../be5ad.. ownership of 7fd9f.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMKaF../3e2ba.. ownership of c51d1.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMPMF../340e9.. ownership of 2c799.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMTvP../909bb.. ownership of fff64.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMSLJ../f7660.. ownership of 94387.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMTLk../3de38.. ownership of 281ca.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMbHA../8fec3.. ownership of d492a.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMSWX../458a2.. ownership of dfe40.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMaV1../3d314.. ownership of a23f8.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMFNt../25a16.. ownership of d1161.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMN8Z../5fd10.. ownership of f1520.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMd6w../5c42b.. ownership of 1a37c.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMJ3A../6fef0.. ownership of 5277e.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMRYW../7bd8e.. ownership of e26ff.. as obj with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
PUgvb../53b70.. doc published by PrGxv..
Param ordinalordinal : ιο
Param ordsuccordsucc : ιι
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param SNoS_SNoS_ : ιι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param SNoSNo : ιο
Param SNoLtSNoLt : ιιο
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param SNoLevSNoLev : ιι
Param SNoCutSNoCut : ιιι
Param binunionbinunion : ιιι
Param famunionfamunion : ι(ιι) → ι
Param SNoEq_SNoEq_ : ιιιο
Known SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Known ordinal_ordsucc_In_Subqordinal_ordsucc_In_Subq : ∀ x0 . ordinal x0∀ x1 . x1x0ordsucc x1x0
Known ordinal_ordsuccordinal_ordsucc : ∀ x0 . ordinal x0ordinal (ordsucc x0)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known ordinal_In_Or_Subqordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Known ordinal_binunionordinal_binunion : ∀ x0 x1 . ordinal x0ordinal x1ordinal (binunion x0 x1)
Known ordinal_famunionordinal_famunion : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0ordinal (x1 x2))ordinal (famunion x0 x1)
Param SNo_SNo_ : ιιο
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known famunionE_impredfamunionE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2famunion x0 x1∀ x3 : ο . (∀ x4 . x4x0x2x1 x4x3)x3
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Theorem SNoCutP_SNoCut_limSNoCutP_SNoCut_lim : ∀ x0 . ordinal x0(∀ x1 . x1x0ordsucc x1x0)∀ x1 . x1SNoS_ x0∀ x2 . x2SNoS_ x0SNoCutP x1 x2SNoLev (SNoCut x1 x2)ordsucc x0 (proof)
Param omegaomega : ι
Known omega_ordinalomega_ordinal : ordinal omega
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Theorem SNoCutP_SNoCut_omegaSNoCutP_SNoCut_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaSNoCutP x0 x1SNoLev (SNoCut x0 x1)ordsucc omega (proof)
Param add_SNoadd_SNo : ιιι
Param eps_eps_ : ιι
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known SNo_0SNo_0 : SNo 0
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Known SNo_eps_posSNo_eps_pos : ∀ x0 . x0omegaSNoLt 0 (eps_ x0)
Theorem add_SNo_eps_Ltadd_SNo_eps_Lt : ∀ x0 . SNo x0∀ x1 . x1omegaSNoLt x0 (add_SNo x0 (eps_ x1)) (proof)
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Theorem add_SNo_eps_Lt'add_SNo_eps_Lt : ∀ x0 x1 . SNo x0SNo x1∀ x2 . x2omegaSNoLt x0 x1SNoLt x0 (add_SNo x1 (eps_ x2)) (proof)
Param minus_SNominus_SNo : ιι
Known add_SNo_minus_Lt2badd_SNo_minus_Lt2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x2 x1) x0SNoLt x2 (add_SNo x0 (minus_SNo x1))
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Theorem SNoLt_minus_posSNoLt_minus_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt 0 (add_SNo x1 (minus_SNo x0)) (proof)
Known ordsucc_omega_ordinalordsucc_omega_ordinal : ordinal (ordsucc omega)
Param binintersectbinintersect : ιιι
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known SNoLtESNoLtE : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1∀ x2 : ο . (∀ x3 . SNo x3SNoLev x3binintersect (SNoLev x0) (SNoLev x1)SNoEq_ (SNoLev x3) x3 x0SNoEq_ (SNoLev x3) x3 x1SNoLt x0 x3SNoLt x3 x1nIn (SNoLev x3) x0SNoLev x3x1x2)(SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1x2)(SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0x2)x2
Known SNo_omegaSNo_omega : SNo omega
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Param SNoLeSNoLe : ιιο
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known ordinal_SNoordinal_SNo : ∀ x0 . ordinal x0SNo x0
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Known ordinal_SNoLev_max_2ordinal_SNoLev_max_2 : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1ordsucc x0SNoLe x1 x0
Known ordinal_SNoLev_maxordinal_SNoLev_max : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1x0SNoLt x1 x0
Known ordinal_SNoLevordinal_SNoLev : ∀ x0 . ordinal x0SNoLev x0 = x0
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Theorem SNoS_ordsucc_omega_bdd_aboveSNoS_ordsucc_omega_bdd_above : ∀ x0 . x0SNoS_ (ordsucc omega)SNoLt x0 omega∀ x1 : ο . (∀ x2 . and (x2omega) (SNoLt x0 x2)x1)x1 (proof)
Known minus_SNo_SNoS_minus_SNo_SNoS_ : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0minus_SNo x1SNoS_ x0
Known minus_SNo_Lt_contra1minus_SNo_Lt_contra1 : ∀ x0 x1 . SNo x0SNo x1SNoLt (minus_SNo x0) x1SNoLt (minus_SNo x1) x0
Known omega_SNoomega_SNo : ∀ x0 . x0omegaSNo x0
Theorem SNoS_ordsucc_omega_bdd_belowSNoS_ordsucc_omega_bdd_below : ∀ x0 . x0SNoS_ (ordsucc omega)SNoLt (minus_SNo omega) x0∀ x1 : ο . (∀ x2 . and (x2omega) (SNoLt (minus_SNo x2) x0)x1)x1 (proof)
Known add_SNo_SNoS_omegaadd_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaadd_SNo x0 x1SNoS_ omega
Known minus_SNo_SNoS_omegaminus_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omegaminus_SNo x0SNoS_ omega
Known SNo_eps_SNoS_omegaSNo_eps_SNoS_omega : ∀ x0 . x0omegaeps_ x0SNoS_ omega
Known add_SNo_minus_Lt1badd_SNo_minus_Lt1b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 (add_SNo x2 x1)SNoLt (add_SNo x0 (minus_SNo x1)) x2
Param nat_pnat_p : ιο
Known eps_ordsucc_half_addeps_ordsucc_half_add : ∀ x0 . nat_p x0add_SNo (eps_ (ordsucc x0)) (eps_ (ordsucc x0)) = eps_ x0
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known add_SNo_com_4_inner_midadd_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x2) (add_SNo x1 x3)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known add_SNo_minus_SNo_linvadd_SNo_minus_SNo_linv : ∀ x0 . SNo x0add_SNo (minus_SNo x0) x0 = 0
Theorem SNoS_omega_drat_intvlSNoS_omega_drat_intvl : ∀ x0 . x0SNoS_ omega∀ x1 . x1omega∀ x2 : ο . (∀ x3 . and (x3SNoS_ omega) (and (SNoLt x3 x0) (SNoLt x0 (add_SNo x3 (eps_ x1))))x2)x2 (proof)
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Theorem omega_SNoS_omegaomega_SNoS_omega : omegaSNoS_ omega (proof)
Param add_natadd_nat : ιιι
Known add_nat_add_SNoadd_nat_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegaadd_nat x0 x1 = add_SNo x0 x1
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_1nat_1 : nat_p 1
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known nat_0nat_0 : nat_p 0
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Theorem add_SNo_1_ordsuccadd_SNo_1_ordsucc : ∀ x0 . x0omegaadd_SNo x0 1 = ordsucc x0 (proof)
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known eps_0_1eps_0_1 : eps_ 0 = 1
Known SNoLt_trichotomy_or_impredSNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2
Known minus_SNo_Lt_contraminus_SNo_Lt_contra : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt (minus_SNo x1) (minus_SNo x0)
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known minus_add_SNo_distrminus_add_SNo_distr : ∀ x0 x1 . SNo x0SNo x1minus_SNo (add_SNo x0 x1) = add_SNo (minus_SNo x0) (minus_SNo x1)
Known SNo_1SNo_1 : SNo 1
Known add_SNo_minus_R2'add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 (minus_SNo x1)) x1 = x0
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Theorem SNoS_ordsucc_omega_bdd_drat_intvlSNoS_ordsucc_omega_bdd_drat_intvl : ∀ x0 . x0SNoS_ (ordsucc omega)SNoLt (minus_SNo omega) x0SNoLt x0 omega∀ x1 . x1omega∀ x2 : ο . (∀ x3 . and (x3SNoS_ omega) (and (SNoLt x3 x0) (SNoLt x0 (add_SNo x3 (eps_ x1))))x2)x2 (proof)
Param abs_SNoabs_SNo : ιι
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Param apap : ιιι
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Param lamSigma : ι(ιι) → ι
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Known Eps_i_exEps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2x1)x1)x0 (prim0 x0)
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known SNo_eps_decrSNo_eps_decr : ∀ x0 . x0omega∀ x1 . x1x0SNoLt (eps_ x0) (eps_ x1)
Known add_SNo_minus_SNo_prop2add_SNo_minus_SNo_prop2 : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 (add_SNo (minus_SNo x0) x1) = x1
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known add_SNo_com_3b_1_2add_SNo_com_3b_1_2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo (add_SNo x0 x1) x2 = add_SNo (add_SNo x0 x2) x1
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Known abs_SNo_dist_swapabs_SNo_dist_swap : ∀ x0 x1 . SNo x0SNo x1abs_SNo (add_SNo x0 (minus_SNo x1)) = abs_SNo (add_SNo x1 (minus_SNo x0))
Known pos_abs_SNopos_abs_SNo : ∀ x0 . SNoLt 0 x0abs_SNo x0 = x0
Known add_SNo_Lt1_canceladd_SNo_Lt1_cancel : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)SNoLt x0 x2
Theorem SNo_prereal_incr_lower_approxSNo_prereal_incr_lower_approx : ∀ x0 . SNo x0(∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)(∀ x1 . x1omega∀ x2 : ο . (∀ x3 . and (x3SNoS_ omega) (and (SNoLt x3 x0) (SNoLt x0 (add_SNo x3 (eps_ x1))))x2)x2)∀ x1 : ο . (∀ x2 . and (x2setexp (SNoS_ omega) omega) (∀ x3 . x3omegaand (and (SNoLt (ap x2 x3) x0) (SNoLt x0 (add_SNo (ap x2 x3) (eps_ x3)))) (∀ x4 . x4x3SNoLt (ap x2 x4) (ap x2 x3)))x1)x1 (proof)
Param SepSep : ι(ιο) → ι
Definition realreal := {x0 ∈ SNoS_ (ordsucc omega)|and (and (x0 = omega∀ x1 : ο . x1) (x0 = minus_SNo omega∀ x1 : ο . x1)) (∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)}
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Theorem real_Ireal_I : ∀ x0 . x0SNoS_ (ordsucc omega)(x0 = omega∀ x1 : ο . x1)(x0 = minus_SNo omega∀ x1 : ο . x1)(∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)x0real (proof)
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SNoLeESNoLeE : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1or (SNoLt x0 x1) (x0 = x1)
Known mordinal_SNoLev_min_2mordinal_SNoLev_min_2 : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1ordsucc x0SNoLe (minus_SNo x0) x1
Theorem real_Ereal_E : ∀ x0 . x0real∀ x1 : ο . (SNo x0SNoLev x0ordsucc omegax0SNoS_ (ordsucc omega)SNoLt (minus_SNo omega) x0SNoLt x0 omega(∀ x2 . x2SNoS_ omega(∀ x3 . x3omegaSNoLt (abs_SNo (add_SNo x2 (minus_SNo x0))) (eps_ x3))x2 = x0)(∀ x2 . x2omega∀ x3 : ο . (∀ x4 . and (x4SNoS_ omega) (and (SNoLt x4 x0) (SNoLt x0 (add_SNo x4 (eps_ x2))))x3)x3)x1)x1 (proof)
Theorem real_SNoreal_SNo : ∀ x0 . x0realSNo x0 (proof)
Theorem real_SNoS_omega_propreal_SNoS_omega_prop : ∀ x0 . x0real∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0 (proof)
Known SNoS_SubqSNoS_Subq : ∀ x0 x1 . ordinal x0ordinal x1x0x1SNoS_ x0SNoS_ x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known minus_SNo_Levminus_SNo_Lev : ∀ x0 . SNo x0SNoLev (minus_SNo x0) = SNoLev x0
Known SNo_pos_eps_LtSNo_pos_eps_Lt : ∀ x0 . nat_p x0∀ x1 . x1SNoS_ (ordsucc x0)SNoLt 0 x1SNoLt (eps_ x0) x1
Theorem SNoS_omega_realSNoS_omega_real : SNoS_ omegareal (proof)
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Known omega_TransSetomega_TransSet : TransSet omega
Theorem SNoLev_In_real_SNoS_omegaSNoLev_In_real_SNoS_omega : ∀ x0 . x0real∀ x1 . SNo x1SNoLev x1SNoLev x0x1SNoS_ omega (proof)
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Theorem minus_SNo_prereal_1minus_SNo_prereal_1 : ∀ x0 . SNo x0(∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo (minus_SNo x0)))) (eps_ x2))x1 = minus_SNo x0 (proof)
Theorem minus_SNo_prereal_2minus_SNo_prereal_2 : ∀ x0 . SNo x0(∀ x1 . x1omega∀ x2 : ο . (∀ x3 . and (x3SNoS_ omega) (and (SNoLt x3 x0) (SNoLt x0 (add_SNo x3 (eps_ x1))))x2)x2)∀ x1 . x1omega∀ x2 : ο . (∀ x3 . and (x3SNoS_ omega) (and (SNoLt x3 (minus_SNo x0)) (SNoLt (minus_SNo x0) (add_SNo x3 (eps_ x1))))x2)x2 (proof)
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known minus_SNo_Lt_contra2minus_SNo_Lt_contra2 : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 (minus_SNo x1)SNoLt x1 (minus_SNo x0)
Theorem SNo_prereal_decr_upper_approxSNo_prereal_decr_upper_approx : ∀ x0 . SNo x0(∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)(∀ x1 . x1omega∀ x2 : ο . (∀ x3 . and (x3SNoS_ omega) (and (SNoLt x3 x0) (SNoLt x0 (add_SNo x3 (eps_ x1))))x2)x2)∀ x1 : ο . (∀ x2 . and (x2setexp (SNoS_ omega) omega) (∀ x3 . x3omegaand (and (SNoLt (add_SNo (ap x2 x3) (minus_SNo (eps_ x3))) x0) (SNoLt x0 (ap x2 x3))) (∀ x4 . x4x3SNoLt (ap x2 x3) (ap x2 x4)))x1)x1 (proof)
Theorem 27f6a.. : ∀ x0 . x0real∀ x1 : ο . (∀ x2 . x2setexp (SNoS_ omega) omega(∀ x3 . x3omegaSNoLt (ap x2 x3) x0)(∀ x3 . x3omegaSNoLt x0 (add_SNo (ap x2 x3) (eps_ x3)))(∀ x3 . x3omega∀ x4 . x4x3SNoLt (ap x2 x4) (ap x2 x3))x1)x1 (proof)
Theorem 355d3.. : ∀ x0 . x0real∀ x1 : ο . (∀ x2 . x2setexp (SNoS_ omega) omega(∀ x3 . x3omegaSNoLt (add_SNo (ap x2 x3) (minus_SNo (eps_ x3))) x0)(∀ x3 . x3omegaSNoLt x0 (ap x2 x3))(∀ x3 . x3omega∀ x4 . x4x3SNoLt (ap x2 x3) (ap x2 x4))x1)x1 (proof)