Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrRV1..
/
3c92f..
PUVYD..
/
47398..
vout
PrRV1..
/
1727a..
0.10 bars
TMcty..
/
62825..
ownership of
816ed..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ5t..
/
3395c..
ownership of
98b35..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFK6..
/
17502..
ownership of
0c96f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbhN..
/
f3435..
ownership of
a798b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRei..
/
741e2..
ownership of
32eec..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWVb..
/
8b63e..
ownership of
e6fcd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU1Z..
/
42eba..
ownership of
ef822..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJBs..
/
c0d78..
ownership of
852fc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVeL..
/
459a2..
ownership of
5286e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFU5..
/
1f372..
ownership of
edcb1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbto..
/
502c6..
ownership of
bcd5f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFy3..
/
d0350..
ownership of
8d1eb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVhc..
/
cb103..
ownership of
1ef8b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVze..
/
ff3b9..
ownership of
7c046..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYdp..
/
5b629..
ownership of
ac259..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZRY..
/
4fc04..
ownership of
e5e2a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFh1..
/
ba7ae..
ownership of
415e0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEyR..
/
426bd..
ownership of
1fedd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYTr..
/
a4968..
ownership of
2da87..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM4n..
/
764e3..
ownership of
bbc3a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNLF..
/
8adbb..
ownership of
ef766..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWkd..
/
b4ae8..
ownership of
4e859..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJdd..
/
f5ddb..
ownership of
42ed6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMawZ..
/
7aedd..
ownership of
8121a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLzP..
/
793e0..
ownership of
e0003..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbCo..
/
7e6ac..
ownership of
a073c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYYX..
/
80700..
ownership of
b7e8e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNbd..
/
1171c..
ownership of
88025..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZck..
/
9d230..
ownership of
d64c3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTtR..
/
a1560..
ownership of
4a54d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF3N..
/
9d0f0..
ownership of
42d26..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUjJ..
/
9eabd..
ownership of
95f08..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLu2..
/
c1509..
ownership of
7b46f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaHy..
/
78f14..
ownership of
f2cf7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZp4..
/
7ad5d..
ownership of
5a458..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbYR..
/
e2314..
ownership of
7ed6d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUTDz..
/
1d5a2..
doc published by
PrCmT..
Known
df_pj__df_hil__df_obs__df_dsmm__df_frlm__df_uvc__df_lindf__df_linds__df_mamu__df_mat__df_dmat__df_scmat__df_mvmul__df_marrep__df_marepv__df_subma__df_mdet__df_madu
:
∀ x0 : ο .
(
wceq
cpj
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cin
(
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clss
)
(
λ x2 .
co
(
cv
x2
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cocv
)
)
(
cfv
(
cv
x1
)
cpj1
)
)
)
(
cxp
cvv
(
co
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
cmap
)
)
)
)
⟶
wceq
chs
(
crab
(
λ x1 .
wceq
(
cdm
(
cfv
(
cv
x1
)
cpj
)
)
(
cfv
(
cv
x1
)
ccss
)
)
(
λ x1 .
cphl
)
)
⟶
wceq
cobs
(
cmpt
(
λ x1 .
cphl
)
(
λ x1 .
crab
(
λ x2 .
wa
(
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cip
)
)
(
cif
(
wceq
(
cv
x3
)
(
cv
x4
)
)
(
cfv
(
cfv
(
cv
x1
)
csca
)
cur
)
(
cfv
(
cfv
(
cv
x1
)
csca
)
c0g
)
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
(
wceq
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cocv
)
)
(
csn
(
cfv
(
cv
x1
)
c0g
)
)
)
)
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
wceq
cdsmm
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
co
(
cv
x1
)
(
cv
x2
)
cprds
)
(
crab
(
λ x3 .
wcel
(
crab
(
λ x4 .
wne
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cfv
(
cv
x4
)
(
cv
x2
)
)
c0g
)
)
(
λ x4 .
cdm
(
cv
x2
)
)
)
cfn
)
(
λ x3 .
cixp
(
λ x4 .
cdm
(
cv
x2
)
)
(
λ x4 .
cfv
(
cfv
(
cv
x4
)
(
cv
x2
)
)
cbs
)
)
)
cress
)
)
⟶
wceq
cfrlm
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
cv
x1
)
(
cxp
(
cv
x2
)
(
csn
(
cfv
(
cv
x1
)
crglmod
)
)
)
cdsmm
)
)
⟶
wceq
cuvc
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cv
x2
)
(
λ x3 .
cmpt
(
λ x4 .
cv
x2
)
(
λ x4 .
cif
(
wceq
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
cur
)
(
cfv
(
cv
x1
)
c0g
)
)
)
)
)
⟶
wceq
clindf
(
copab
(
λ x1 x2 .
wa
(
wf
(
cdm
(
cv
x1
)
)
(
cfv
(
cv
x2
)
cbs
)
(
cv
x1
)
)
(
wsbc
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wn
(
wcel
(
co
(
cv
x5
)
(
cfv
(
cv
x4
)
(
cv
x1
)
)
(
cfv
(
cv
x2
)
cvsca
)
)
(
cfv
(
cima
(
cv
x1
)
(
cdif
(
cdm
(
cv
x1
)
)
(
csn
(
cv
x4
)
)
)
)
(
cfv
(
cv
x2
)
clspn
)
)
)
)
(
λ x5 .
cdif
(
cfv
(
cv
x3
)
cbs
)
(
csn
(
cfv
(
cv
x3
)
c0g
)
)
)
)
(
λ x4 .
cdm
(
cv
x1
)
)
)
(
cfv
(
cv
x2
)
csca
)
)
)
)
⟶
wceq
clinds
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wbr
(
cres
cid
(
cv
x2
)
)
(
cv
x1
)
clindf
)
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
wceq
cmmul
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
cfv
(
cfv
(
cv
x2
)
c1st
)
c1st
)
(
λ x3 .
csb
(
cfv
(
cfv
(
cv
x2
)
c1st
)
c2nd
)
(
λ x4 .
csb
(
cfv
(
cv
x2
)
c2nd
)
(
λ x5 .
cmpt2
(
λ x6 x7 .
co
(
cfv
(
cv
x1
)
cbs
)
(
cxp
(
cv
x3
)
(
cv
x4
)
)
cmap
)
(
λ x6 x7 .
co
(
cfv
(
cv
x1
)
cbs
)
(
cxp
(
cv
x4
)
(
cv
x5
)
)
cmap
)
(
λ x6 x7 .
cmpt2
(
λ x8 x9 .
cv
x3
)
(
λ x8 x9 .
cv
x5
)
(
λ x8 x9 .
co
(
cv
x1
)
(
cmpt
(
λ x10 .
cv
x4
)
(
λ x10 .
co
(
co
(
cv
x8
)
(
cv
x10
)
(
cv
x6
)
)
(
co
(
cv
x10
)
(
cv
x9
)
(
cv
x7
)
)
(
cfv
(
cv
x1
)
cmulr
)
)
)
cgsu
)
)
)
)
)
)
)
⟶
wceq
cmat
(
cmpt2
(
λ x1 x2 .
cfn
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
co
(
cv
x2
)
(
cxp
(
cv
x1
)
(
cv
x1
)
)
cfrlm
)
(
cop
(
cfv
cnx
cmulr
)
(
co
(
cv
x2
)
(
cotp
(
cv
x1
)
(
cv
x1
)
(
cv
x1
)
)
cmmul
)
)
csts
)
)
⟶
wceq
cdmat
(
cmpt2
(
λ x1 x2 .
cfn
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wne
(
cv
x4
)
(
cv
x5
)
⟶
wceq
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
c0g
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cmat
)
cbs
)
)
)
⟶
wceq
cscmat
(
cmpt2
(
λ x1 x2 .
cfn
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
co
(
cv
x1
)
(
cv
x2
)
cmat
)
(
λ x3 .
crab
(
λ x4 .
wrex
(
λ x5 .
wceq
(
cv
x4
)
(
co
(
cv
x5
)
(
cfv
(
cv
x3
)
cur
)
(
cfv
(
cv
x3
)
cvsca
)
)
)
(
λ x5 .
cfv
(
cv
x2
)
cbs
)
)
(
λ x4 .
cfv
(
cv
x3
)
cbs
)
)
)
)
⟶
wceq
cmvmul
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
cfv
(
cv
x2
)
c1st
)
(
λ x3 .
csb
(
cfv
(
cv
x2
)
c2nd
)
(
λ x4 .
cmpt2
(
λ x5 x6 .
co
(
cfv
(
cv
x1
)
cbs
)
(
cxp
(
cv
x3
)
(
cv
x4
)
)
cmap
)
(
λ x5 x6 .
co
(
cfv
(
cv
x1
)
cbs
)
(
cv
x4
)
cmap
)
(
λ x5 x6 .
cmpt
(
λ x7 .
cv
x3
)
(
λ x7 .
co
(
cv
x1
)
(
cmpt
(
λ x8 .
cv
x4
)
(
λ x8 .
co
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x5
)
)
(
cfv
(
cv
x8
)
(
cv
x6
)
)
(
cfv
(
cv
x1
)
cmulr
)
)
)
cgsu
)
)
)
)
)
)
⟶
wceq
cmarrep
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt2
(
λ x3 x4 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cmat
)
cbs
)
(
λ x3 x4 .
cfv
(
cv
x2
)
cbs
)
(
λ x3 x4 .
cmpt2
(
λ x5 x6 .
cv
x1
)
(
λ x5 x6 .
cv
x1
)
(
λ x5 x6 .
cmpt2
(
λ x7 x8 .
cv
x1
)
(
λ x7 x8 .
cv
x1
)
(
λ x7 x8 .
cif
(
wceq
(
cv
x7
)
(
cv
x5
)
)
(
cif
(
wceq
(
cv
x8
)
(
cv
x6
)
)
(
cv
x4
)
(
cfv
(
cv
x2
)
c0g
)
)
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x3
)
)
)
)
)
)
)
⟶
wceq
cmatrepV
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt2
(
λ x3 x4 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cmat
)
cbs
)
(
λ x3 x4 .
co
(
cfv
(
cv
x2
)
cbs
)
(
cv
x1
)
cmap
)
(
λ x3 x4 .
cmpt
(
λ x5 .
cv
x1
)
(
λ x5 .
cmpt2
(
λ x6 x7 .
cv
x1
)
(
λ x6 x7 .
cv
x1
)
(
λ x6 x7 .
cif
(
wceq
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x3
)
)
)
)
)
)
)
⟶
wceq
csubma
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cmat
)
cbs
)
(
λ x3 .
cmpt2
(
λ x4 x5 .
cv
x1
)
(
λ x4 x5 .
cv
x1
)
(
λ x4 x5 .
cmpt2
(
λ x6 x7 .
cdif
(
cv
x1
)
(
csn
(
cv
x4
)
)
)
(
λ x6 x7 .
cdif
(
cv
x1
)
(
csn
(
cv
x5
)
)
)
(
λ x6 x7 .
co
(
cv
x6
)
(
cv
x7
)
(
cv
x3
)
)
)
)
)
)
⟶
wceq
cmdat
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cmat
)
cbs
)
(
λ x3 .
co
(
cv
x2
)
(
cmpt
(
λ x4 .
cfv
(
cfv
(
cv
x1
)
csymg
)
cbs
)
(
λ x4 .
co
(
cfv
(
cv
x4
)
(
ccom
(
cfv
(
cv
x2
)
czrh
)
(
cfv
(
cv
x1
)
cpsgn
)
)
)
(
co
(
cfv
(
cv
x2
)
cmgp
)
(
cmpt
(
λ x5 .
cv
x1
)
(
λ x5 .
co
(
cfv
(
cv
x5
)
(
cv
x4
)
)
(
cv
x5
)
(
cv
x3
)
)
)
cgsu
)
(
cfv
(
cv
x2
)
cmulr
)
)
)
cgsu
)
)
)
⟶
wceq
cmadu
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cmat
)
cbs
)
(
λ x3 .
cmpt2
(
λ x4 x5 .
cv
x1
)
(
λ x4 x5 .
cv
x1
)
(
λ x4 x5 .
cfv
(
cmpt2
(
λ x6 x7 .
cv
x1
)
(
λ x6 x7 .
cv
x1
)
(
λ x6 x7 .
cif
(
wceq
(
cv
x6
)
(
cv
x5
)
)
(
cif
(
wceq
(
cv
x7
)
(
cv
x4
)
)
(
cfv
(
cv
x2
)
cur
)
(
cfv
(
cv
x2
)
c0g
)
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x3
)
)
)
)
(
co
(
cv
x1
)
(
cv
x2
)
cmdat
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_pj
:
wceq
cpj
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cin
(
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clss
)
(
λ x1 .
co
(
cv
x1
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cocv
)
)
(
cfv
(
cv
x0
)
cpj1
)
)
)
(
cxp
cvv
(
co
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
cmap
)
)
)
)
(proof)
Theorem
df_hil
:
wceq
chs
(
crab
(
λ x0 .
wceq
(
cdm
(
cfv
(
cv
x0
)
cpj
)
)
(
cfv
(
cv
x0
)
ccss
)
)
(
λ x0 .
cphl
)
)
(proof)
Theorem
df_obs
:
wceq
cobs
(
cmpt
(
λ x0 .
cphl
)
(
λ x0 .
crab
(
λ x1 .
wa
(
wral
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cip
)
)
(
cif
(
wceq
(
cv
x2
)
(
cv
x3
)
)
(
cfv
(
cfv
(
cv
x0
)
csca
)
cur
)
(
cfv
(
cfv
(
cv
x0
)
csca
)
c0g
)
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
(
wceq
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cocv
)
)
(
csn
(
cfv
(
cv
x0
)
c0g
)
)
)
)
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)
Theorem
df_dsmm
:
wceq
cdsmm
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
co
(
cv
x0
)
(
cv
x1
)
cprds
)
(
crab
(
λ x2 .
wcel
(
crab
(
λ x3 .
wne
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cfv
(
cv
x3
)
(
cv
x1
)
)
c0g
)
)
(
λ x3 .
cdm
(
cv
x1
)
)
)
cfn
)
(
λ x2 .
cixp
(
λ x3 .
cdm
(
cv
x1
)
)
(
λ x3 .
cfv
(
cfv
(
cv
x3
)
(
cv
x1
)
)
cbs
)
)
)
cress
)
)
(proof)
Theorem
df_frlm
:
wceq
cfrlm
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
cv
x0
)
(
cxp
(
cv
x1
)
(
csn
(
cfv
(
cv
x0
)
crglmod
)
)
)
cdsmm
)
)
(proof)
Theorem
df_uvc
:
wceq
cuvc
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cv
x1
)
(
λ x2 .
cmpt
(
λ x3 .
cv
x1
)
(
λ x3 .
cif
(
wceq
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
cur
)
(
cfv
(
cv
x0
)
c0g
)
)
)
)
)
(proof)
Theorem
df_lindf
:
wceq
clindf
(
copab
(
λ x0 x1 .
wa
(
wf
(
cdm
(
cv
x0
)
)
(
cfv
(
cv
x1
)
cbs
)
(
cv
x0
)
)
(
wsbc
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wn
(
wcel
(
co
(
cv
x4
)
(
cfv
(
cv
x3
)
(
cv
x0
)
)
(
cfv
(
cv
x1
)
cvsca
)
)
(
cfv
(
cima
(
cv
x0
)
(
cdif
(
cdm
(
cv
x0
)
)
(
csn
(
cv
x3
)
)
)
)
(
cfv
(
cv
x1
)
clspn
)
)
)
)
(
λ x4 .
cdif
(
cfv
(
cv
x2
)
cbs
)
(
csn
(
cfv
(
cv
x2
)
c0g
)
)
)
)
(
λ x3 .
cdm
(
cv
x0
)
)
)
(
cfv
(
cv
x1
)
csca
)
)
)
)
(proof)
Theorem
df_linds
:
wceq
clinds
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wbr
(
cres
cid
(
cv
x1
)
)
(
cv
x0
)
clindf
)
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)
Theorem
df_mamu
:
wceq
cmmul
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
cfv
(
cfv
(
cv
x1
)
c1st
)
c1st
)
(
λ x2 .
csb
(
cfv
(
cfv
(
cv
x1
)
c1st
)
c2nd
)
(
λ x3 .
csb
(
cfv
(
cv
x1
)
c2nd
)
(
λ x4 .
cmpt2
(
λ x5 x6 .
co
(
cfv
(
cv
x0
)
cbs
)
(
cxp
(
cv
x2
)
(
cv
x3
)
)
cmap
)
(
λ x5 x6 .
co
(
cfv
(
cv
x0
)
cbs
)
(
cxp
(
cv
x3
)
(
cv
x4
)
)
cmap
)
(
λ x5 x6 .
cmpt2
(
λ x7 x8 .
cv
x2
)
(
λ x7 x8 .
cv
x4
)
(
λ x7 x8 .
co
(
cv
x0
)
(
cmpt
(
λ x9 .
cv
x3
)
(
λ x9 .
co
(
co
(
cv
x7
)
(
cv
x9
)
(
cv
x5
)
)
(
co
(
cv
x9
)
(
cv
x8
)
(
cv
x6
)
)
(
cfv
(
cv
x0
)
cmulr
)
)
)
cgsu
)
)
)
)
)
)
)
(proof)
Theorem
df_mat
:
wceq
cmat
(
cmpt2
(
λ x0 x1 .
cfn
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
co
(
cv
x1
)
(
cxp
(
cv
x0
)
(
cv
x0
)
)
cfrlm
)
(
cop
(
cfv
cnx
cmulr
)
(
co
(
cv
x1
)
(
cotp
(
cv
x0
)
(
cv
x0
)
(
cv
x0
)
)
cmmul
)
)
csts
)
)
(proof)
Theorem
df_dmat
:
wceq
cdmat
(
cmpt2
(
λ x0 x1 .
cfn
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wne
(
cv
x3
)
(
cv
x4
)
⟶
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
c0g
)
)
(
λ x4 .
cv
x0
)
)
(
λ x3 .
cv
x0
)
)
(
λ x2 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cmat
)
cbs
)
)
)
(proof)
Theorem
df_scmat
:
wceq
cscmat
(
cmpt2
(
λ x0 x1 .
cfn
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
co
(
cv
x0
)
(
cv
x1
)
cmat
)
(
λ x2 .
crab
(
λ x3 .
wrex
(
λ x4 .
wceq
(
cv
x3
)
(
co
(
cv
x4
)
(
cfv
(
cv
x2
)
cur
)
(
cfv
(
cv
x2
)
cvsca
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x2
)
cbs
)
)
)
)
(proof)
Theorem
df_mvmul
:
wceq
cmvmul
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
cfv
(
cv
x1
)
c1st
)
(
λ x2 .
csb
(
cfv
(
cv
x1
)
c2nd
)
(
λ x3 .
cmpt2
(
λ x4 x5 .
co
(
cfv
(
cv
x0
)
cbs
)
(
cxp
(
cv
x2
)
(
cv
x3
)
)
cmap
)
(
λ x4 x5 .
co
(
cfv
(
cv
x0
)
cbs
)
(
cv
x3
)
cmap
)
(
λ x4 x5 .
cmpt
(
λ x6 .
cv
x2
)
(
λ x6 .
co
(
cv
x0
)
(
cmpt
(
λ x7 .
cv
x3
)
(
λ x7 .
co
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x4
)
)
(
cfv
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x0
)
cmulr
)
)
)
cgsu
)
)
)
)
)
)
(proof)
Theorem
df_marrep
:
wceq
cmarrep
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt2
(
λ x2 x3 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cmat
)
cbs
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
cmpt2
(
λ x4 x5 .
cv
x0
)
(
λ x4 x5 .
cv
x0
)
(
λ x4 x5 .
cmpt2
(
λ x6 x7 .
cv
x0
)
(
λ x6 x7 .
cv
x0
)
(
λ x6 x7 .
cif
(
wceq
(
cv
x6
)
(
cv
x4
)
)
(
cif
(
wceq
(
cv
x7
)
(
cv
x5
)
)
(
cv
x3
)
(
cfv
(
cv
x1
)
c0g
)
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x2
)
)
)
)
)
)
)
(proof)
Theorem
df_marepv
:
wceq
cmatrepV
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt2
(
λ x2 x3 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cmat
)
cbs
)
(
λ x2 x3 .
co
(
cfv
(
cv
x1
)
cbs
)
(
cv
x0
)
cmap
)
(
λ x2 x3 .
cmpt
(
λ x4 .
cv
x0
)
(
λ x4 .
cmpt2
(
λ x5 x6 .
cv
x0
)
(
λ x5 x6 .
cv
x0
)
(
λ x5 x6 .
cif
(
wceq
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x2
)
)
)
)
)
)
)
(proof)
Theorem
df_subma
:
wceq
csubma
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cmat
)
cbs
)
(
λ x2 .
cmpt2
(
λ x3 x4 .
cv
x0
)
(
λ x3 x4 .
cv
x0
)
(
λ x3 x4 .
cmpt2
(
λ x5 x6 .
cdif
(
cv
x0
)
(
csn
(
cv
x3
)
)
)
(
λ x5 x6 .
cdif
(
cv
x0
)
(
csn
(
cv
x4
)
)
)
(
λ x5 x6 .
co
(
cv
x5
)
(
cv
x6
)
(
cv
x2
)
)
)
)
)
)
(proof)
Theorem
df_mdet
:
wceq
cmdat
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cmat
)
cbs
)
(
λ x2 .
co
(
cv
x1
)
(
cmpt
(
λ x3 .
cfv
(
cfv
(
cv
x0
)
csymg
)
cbs
)
(
λ x3 .
co
(
cfv
(
cv
x3
)
(
ccom
(
cfv
(
cv
x1
)
czrh
)
(
cfv
(
cv
x0
)
cpsgn
)
)
)
(
co
(
cfv
(
cv
x1
)
cmgp
)
(
cmpt
(
λ x4 .
cv
x0
)
(
λ x4 .
co
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cv
x4
)
(
cv
x2
)
)
)
cgsu
)
(
cfv
(
cv
x1
)
cmulr
)
)
)
cgsu
)
)
)
(proof)
Theorem
df_madu
:
wceq
cmadu
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cmat
)
cbs
)
(
λ x2 .
cmpt2
(
λ x3 x4 .
cv
x0
)
(
λ x3 x4 .
cv
x0
)
(
λ x3 x4 .
cfv
(
cmpt2
(
λ x5 x6 .
cv
x0
)
(
λ x5 x6 .
cv
x0
)
(
λ x5 x6 .
cif
(
wceq
(
cv
x5
)
(
cv
x4
)
)
(
cif
(
wceq
(
cv
x6
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
cur
)
(
cfv
(
cv
x1
)
c0g
)
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x2
)
)
)
)
(
co
(
cv
x0
)
(
cv
x1
)
cmdat
)
)
)
)
)
(proof)