Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrFK8..
/
9f90d..
PUWJo..
/
8069e..
vout
PrFK8..
/
9aab1..
0.01 bars
TMU3T..
/
1e951..
negprop ownership controlledby
Pr4zB..
upto 0
TMUHT..
/
e3827..
negprop ownership controlledby
Pr4zB..
upto 0
TMZ1Q..
/
cfe05..
negprop ownership controlledby
Pr4zB..
upto 0
TMEvQ..
/
5599d..
negprop ownership controlledby
Pr4zB..
upto 0
TMcig..
/
eda76..
negprop ownership controlledby
Pr4zB..
upto 0
TMSbc..
/
a1d68..
negprop ownership controlledby
Pr4zB..
upto 0
TMRjg..
/
40432..
negprop ownership controlledby
Pr4zB..
upto 0
TMT5K..
/
942f9..
negprop ownership controlledby
Pr4zB..
upto 0
TMUwu..
/
fb893..
negprop ownership controlledby
Pr4zB..
upto 0
TMRt3..
/
f1dbc..
negprop ownership controlledby
Pr4zB..
upto 0
TMJW1..
/
6bf20..
negprop ownership controlledby
Pr4zB..
upto 0
TMErg..
/
c0a23..
negprop ownership controlledby
Pr4zB..
upto 0
TMGr3..
/
f6742..
negprop ownership controlledby
Pr4zB..
upto 0
TMXAa..
/
4dcf4..
negprop ownership controlledby
Pr4zB..
upto 0
TMGS4..
/
dad3d..
negprop ownership controlledby
Pr4zB..
upto 0
TMWQT..
/
14e5d..
negprop ownership controlledby
Pr4zB..
upto 0
TMMTW..
/
79bcf..
negprop ownership controlledby
Pr4zB..
upto 0
TMFc9..
/
63398..
negprop ownership controlledby
Pr4zB..
upto 0
TMQjj..
/
433aa..
negprop ownership controlledby
Pr4zB..
upto 0
TMMHo..
/
cb8ed..
negprop ownership controlledby
Pr4zB..
upto 0
TMPTE..
/
ca17d..
ownership of
84f84..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUNj..
/
12d30..
ownership of
f4f10..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWJv..
/
444cd..
ownership of
3de2e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMK56..
/
9dfc3..
ownership of
7675d..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMV4o..
/
b2c96..
ownership of
41978..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMTnd..
/
1d8f6..
ownership of
87e3c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJ6q..
/
e2d88..
ownership of
73405..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMHCR..
/
a2e56..
ownership of
1c506..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcxp..
/
9855e..
ownership of
eff2c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMKAd..
/
cfbb5..
ownership of
cc974..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMK7G..
/
5eff5..
ownership of
cd2fd..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLue..
/
b0cf9..
ownership of
b7709..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMHUS..
/
e70eb..
ownership of
8b769..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMS5V..
/
07e6b..
ownership of
998ac..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMqa..
/
fd902..
ownership of
95a55..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMSbQ..
/
a721f..
ownership of
4a26d..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMbxd..
/
f57ec..
ownership of
e1864..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGWg..
/
b915d..
ownership of
9b0d4..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMdAv..
/
a87fc..
ownership of
33278..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMZap..
/
ed3f4..
ownership of
b0e56..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMSib..
/
385ae..
ownership of
fe972..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMYFa..
/
745c6..
ownership of
efe4e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMb2S..
/
eac4b..
ownership of
ce62b..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMXuW..
/
dba46..
ownership of
d1fac..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMY6y..
/
76932..
ownership of
7f909..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMTGd..
/
8486f..
ownership of
edae1..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMH8C..
/
ccc0d..
ownership of
69d43..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMQVQ..
/
e2625..
ownership of
9579d..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMdrn..
/
2f971..
ownership of
df26e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMdNB..
/
d8505..
ownership of
8e31e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMYhj..
/
54944..
ownership of
54668..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMNue..
/
67e35..
ownership of
453f4..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMU5S..
/
89dda..
ownership of
ff590..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMVSf..
/
3a05f..
ownership of
edbe3..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMVHz..
/
03a79..
ownership of
6bca8..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJWT..
/
2ccab..
ownership of
2e14d..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGsG..
/
15052..
ownership of
476b4..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMX2B..
/
4684b..
ownership of
53186..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMZTR..
/
66eaf..
ownership of
9df0e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMRN1..
/
a8892..
ownership of
ab581..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMiR..
/
6d99a..
ownership of
052c4..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMT6e..
/
1cbb4..
ownership of
a3891..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMQVm..
/
4d963..
ownership of
70922..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcrJ..
/
03948..
ownership of
7117a..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUKgX..
/
e31c3..
doc published by
Pr4zB..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
Subq
Subq
:
ι
→
ι
→
ο
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
a6a5a..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
(
∀ x9 .
x9
∈
x8
⟶
∀ x10 :
ι → ο
.
x10
x0
⟶
x10
x1
⟶
x10
x2
⟶
x10
x3
⟶
x10
x4
⟶
x10
x5
⟶
x10
x6
⟶
x10
x7
⟶
x10
x9
)
⟶
∀ x9 .
x9
⊆
x8
⟶
atleastp
3
x9
⟶
∀ x10 : ο .
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x2
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x3
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x4
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x4
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x4
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x5
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
x10
Known
c14f6..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
(
∀ x9 .
x9
∈
x8
⟶
∀ x10 :
ι → ο
.
x10
x0
⟶
x10
x1
⟶
x10
x2
⟶
x10
x3
⟶
x10
x4
⟶
x10
x5
⟶
x10
x6
⟶
x10
x7
⟶
x10
x9
)
⟶
∀ x9 .
x9
⊆
x8
⟶
atleastp
4
x9
⟶
∀ x10 : ο .
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x2
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x2
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x3
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x3
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x4
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x4
∈
x9
⟶
x5
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x1
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x2
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x2
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x3
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x4
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x0
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x1
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x2
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x3
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
(
x4
∈
x9
⟶
x5
∈
x9
⟶
x6
∈
x9
⟶
x7
∈
x9
⟶
x10
)
⟶
x10
Theorem
70922..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
(
∀ x9 .
x9
∈
x8
⟶
∀ x10 :
ι → ο
.
x10
x0
⟶
x10
x1
⟶
x10
x2
⟶
x10
x3
⟶
x10
x4
⟶
x10
x5
⟶
x10
x6
⟶
x10
x7
⟶
x10
x9
)
⟶
(
x0
=
x1
⟶
∀ x9 : ο .
x9
)
⟶
(
x0
=
x2
⟶
∀ x9 : ο .
x9
)
⟶
(
x1
=
x2
⟶
∀ x9 : ο .
x9
)
⟶
(
x0
=
x3
⟶
∀ x9 : ο .
x9
)
⟶
(
x1
=
x3
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x3
⟶
∀ x9 : ο .
x9
)
⟶
(
x0
=
x4
⟶
∀ x9 : ο .
x9
)
⟶
(
x1
=
x4
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x4
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x4
⟶
∀ x9 : ο .
x9
)
⟶
(
x0
=
x5
⟶
∀ x9 : ο .
x9
)
⟶
(
x1
=
x5
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x5
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x5
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x5
⟶
∀ x9 : ο .
x9
)
⟶
(
x0
=
x6
⟶
∀ x9 : ο .
x9
)
⟶
(
x1
=
x6
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x6
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x6
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x6
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x6
⟶
∀ x9 : ο .
x9
)
⟶
(
x0
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
∀ x9 :
ι →
ι → ο
.
(
∀ x10 : ο .
x9
x0
x1
⟶
x10
)
⟶
(
∀ x10 : ο .
x9
x0
x2
⟶
x10
)
⟶
(
∀ x10 : ο .
x9
x1
x2
⟶
x10
)
⟶
(
∀ x10 : ο .
x9
x0
x3
⟶
x10
)
⟶
(
∀ x10 : ο .
x9
x1
x3
⟶
x10
)
⟶
x9
x2
x3
⟶
(
∀ x10 : ο .
x9
x0
x4
⟶
x10
)
⟶
x9
x1
x4
⟶
(
∀ x10 : ο .
x9
x2
x4
⟶
x10
)
⟶
x9
x3
x4
⟶
(
∀ x10 : ο .
x9
x0
x5
⟶
x10
)
⟶
x9
x1
x5
⟶
x9
x2
x5
⟶
(
∀ x10 : ο .
x9
x3
x5
⟶
x10
)
⟶
(
∀ x10 : ο .
x9
x4
x5
⟶
x10
)
⟶
x9
x0
x6
⟶
(
∀ x10 : ο .
x9
x1
x6
⟶
x10
)
⟶
(
∀ x10 : ο .
x9
x2
x6
⟶
x10
)
⟶
x9
x3
x6
⟶
(
∀ x10 : ο .
x9
x4
x6
⟶
x10
)
⟶
x9
x5
x6
⟶
x9
x0
x7
⟶
(
∀ x10 : ο .
x9
x1
x7
⟶
x10
)
⟶
x9
x2
x7
⟶
(
∀ x10 : ο .
x9
x3
x7
⟶
x10
)
⟶
x9
x4
x7
⟶
(
∀ x10 : ο .
x9
x5
x7
⟶
x10
)
⟶
(
∀ x10 : ο .
x9
x6
x7
⟶
x10
)
⟶
and
(
∀ x10 .
x10
⊆
x8
⟶
atleastp
3
x10
⟶
∀ x11 : ο .
(
∀ x12 .
x12
∈
x10
⟶
∀ x13 .
x13
∈
x10
⟶
(
x12
=
x13
⟶
∀ x14 : ο .
x14
)
⟶
not
(
x9
x12
x13
)
⟶
x11
)
⟶
x11
)
(
∀ x10 .
x10
⊆
x8
⟶
atleastp
4
x10
⟶
∀ x11 : ο .
(
∀ x12 .
x12
∈
x10
⟶
∀ x13 .
x13
∈
x10
⟶
(
x12
=
x13
⟶
∀ x14 : ο .
x14
)
⟶
x9
x12
x13
⟶
x11
)
⟶
x11
)
...
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
TwoRamseyProp_atleastp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∃ x4 .
and
(
x4
⊆
x2
)
(
and
(
atleastp
x0
x4
)
(
∀ x6 .
x6
∈
x4
⟶
∀ x7 .
x7
∈
x4
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
)
(
∃ x4 .
and
(
x4
⊆
x2
)
(
and
(
atleastp
x1
x4
)
(
∀ x6 .
x6
∈
x4
⟶
∀ x7 .
x7
∈
x4
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
052c4..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
(
∀ x9 .
x9
∈
x8
⟶
∀ x10 :
ι → ο
.
x10
x0
⟶
x10
x1
⟶
x10
x2
⟶
x10
x3
⟶
x10
x4
⟶
x10
x5
⟶
x10
x6
⟶
x10
x7
⟶
x10
x9
)
⟶
(
x0
=
x1
⟶
∀ x9 : ο .
x9
)
⟶
(
x0
=
x2
⟶
∀ x9 : ο .
x9
)
⟶
(
x1
=
x2
⟶
∀ x9 : ο .
x9
)
⟶
(
x0
=
x3
⟶
∀ x9 : ο .
x9
)
⟶
(
x1
=
x3
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x3
⟶
∀ x9 : ο .
x9
)
⟶
(
x0
=
x4
⟶
∀ x9 : ο .
x9
)
⟶
(
x1
=
x4
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x4
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x4
⟶
∀ x9 : ο .
x9
)
⟶
(
x0
=
x5
⟶
∀ x9 : ο .
x9
)
⟶
(
x1
=
x5
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x5
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x5
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x5
⟶
∀ x9 : ο .
x9
)
⟶
(
x0
=
x6
⟶
∀ x9 : ο .
x9
)
⟶
(
x1
=
x6
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x6
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x6
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x6
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x6
⟶
∀ x9 : ο .
x9
)
⟶
(
x0
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
not
(
TwoRamseyProp_atleastp
3
4
x8
)
...
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Known
cases_8
cases_8
:
∀ x0 .
x0
∈
8
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
6
⟶
x1
7
⟶
x1
x0
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Known
neq_0_2
neq_0_2
:
0
=
2
⟶
∀ x0 : ο .
x0
Known
neq_1_2
neq_1_2
:
1
=
2
⟶
∀ x0 : ο .
x0
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
neq_3_0
neq_3_0
:
3
=
0
⟶
∀ x0 : ο .
x0
Known
neq_3_1
neq_3_1
:
3
=
1
⟶
∀ x0 : ο .
x0
Known
neq_3_2
neq_3_2
:
3
=
2
⟶
∀ x0 : ο .
x0
Known
neq_4_0
neq_4_0
:
4
=
0
⟶
∀ x0 : ο .
x0
Known
neq_4_1
neq_4_1
:
4
=
1
⟶
∀ x0 : ο .
x0
Known
neq_4_2
neq_4_2
:
4
=
2
⟶
∀ x0 : ο .
x0
Known
neq_4_3
neq_4_3
:
4
=
3
⟶
∀ x0 : ο .
x0
Known
neq_5_0
neq_5_0
:
5
=
0
⟶
∀ x0 : ο .
x0
Known
neq_5_1
neq_5_1
:
5
=
1
⟶
∀ x0 : ο .
x0
Known
neq_5_2
neq_5_2
:
5
=
2
⟶
∀ x0 : ο .
x0
Known
neq_5_3
neq_5_3
:
5
=
3
⟶
∀ x0 : ο .
x0
Known
neq_5_4
neq_5_4
:
5
=
4
⟶
∀ x0 : ο .
x0
Known
neq_6_0
neq_6_0
:
6
=
0
⟶
∀ x0 : ο .
x0
Known
neq_6_1
neq_6_1
:
6
=
1
⟶
∀ x0 : ο .
x0
Known
neq_6_2
neq_6_2
:
6
=
2
⟶
∀ x0 : ο .
x0
Known
neq_6_3
neq_6_3
:
6
=
3
⟶
∀ x0 : ο .
x0
Known
neq_6_4
neq_6_4
:
6
=
4
⟶
∀ x0 : ο .
x0
Known
neq_6_5
neq_6_5
:
6
=
5
⟶
∀ x0 : ο .
x0
Known
neq_7_0
neq_7_0
:
7
=
0
⟶
∀ x0 : ο .
x0
Known
neq_7_1
neq_7_1
:
7
=
1
⟶
∀ x0 : ο .
x0
Known
neq_7_2
neq_7_2
:
7
=
2
⟶
∀ x0 : ο .
x0
Known
neq_7_3
neq_7_3
:
7
=
3
⟶
∀ x0 : ο .
x0
Known
neq_7_4
neq_7_4
:
7
=
4
⟶
∀ x0 : ο .
x0
Known
neq_7_5
neq_7_5
:
7
=
5
⟶
∀ x0 : ο .
x0
Known
neq_7_6
neq_7_6
:
7
=
6
⟶
∀ x0 : ο .
x0
Known
TwoRamseyProp_atleastp_atleastp
:
∀ x0 x1 x2 x3 x4 .
TwoRamseyProp
x0
x2
x4
⟶
atleastp
x1
x0
⟶
atleastp
x3
x2
⟶
TwoRamseyProp_atleastp
x1
x3
x4
Known
atleastp_ref
:
∀ x0 .
atleastp
x0
x0
Theorem
not_TwoRamseyProp_3_4_8
not_TwoRamseyProp_3_4_8
:
not
(
TwoRamseyProp
3
4
8
)
...
Param
UPair
UPair
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Known
In_Power_3_cases_impred
:
∀ x0 .
x0
∈
prim4
3
⟶
∀ x1 : ο .
(
x0
=
0
⟶
x1
)
⟶
(
x0
=
1
⟶
x1
)
⟶
(
x0
=
Sing
1
⟶
x1
)
⟶
(
x0
=
2
⟶
x1
)
⟶
(
x0
=
Sing
2
⟶
x1
)
⟶
(
x0
=
UPair
0
2
⟶
x1
)
⟶
(
x0
=
UPair
1
2
⟶
x1
)
⟶
(
x0
=
3
⟶
x1
)
⟶
x1
Known
not_Empty_eq_Sing
:
∀ x0 .
0
=
Sing
x0
⟶
∀ x1 : ο .
x1
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
nIn_not_eq_Sing
:
∀ x0 x1 .
nIn
x0
x1
⟶
x1
=
Sing
x0
⟶
∀ x2 : ο .
x2
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
nIn_2_1
nIn_2_1
:
nIn
2
1
Known
neq_2_1
neq_2_1
:
2
=
1
⟶
∀ x0 : ο .
x0
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
In_0_2
In_0_2
:
0
∈
2
Known
not_Empty_eq_UPair
:
∀ x0 x1 .
0
=
UPair
x0
x1
⟶
∀ x2 : ο .
x2
Known
nIn_not_eq_UPair_2
:
∀ x0 x1 x2 .
nIn
x1
x2
⟶
x2
=
UPair
x0
x1
⟶
∀ x3 : ο .
x3
Known
nIn_not_eq_UPair_1
:
∀ x0 x1 x2 .
nIn
x0
x2
⟶
x2
=
UPair
x0
x1
⟶
∀ x3 : ο .
x3
Known
UPairE
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
neq_1_0
neq_1_0
:
1
=
0
⟶
∀ x0 : ο .
x0
Known
In_0_3
In_0_3
:
0
∈
3
Known
In_1_3
In_1_3
:
1
∈
3
Theorem
not_TwoRamseyProp_atleast_3_4_Power_3
:
not
(
TwoRamseyProp_atleastp
3
4
(
prim4
3
)
)
...
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_In_atleastp
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
atleastp
x1
x0
Known
nat_5
nat_5
:
nat_p
5
Known
In_4_5
In_4_5
:
4
∈
5
Theorem
6bca8..
not_TwoRamseyProp_3_5_Power_3
:
not
(
TwoRamseyProp
3
5
(
prim4
3
)
)
...
Known
nat_6
nat_6
:
nat_p
6
Known
In_4_6
In_4_6
:
4
∈
6
Theorem
ff590..
not_TwoRamseyProp_3_6_Power_3
:
not
(
TwoRamseyProp
3
6
(
prim4
3
)
)
...
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Theorem
nat_7
nat_7
:
nat_p
7
...
Theorem
nat_8
nat_8
:
nat_p
8
...
Theorem
nat_9
nat_9
:
nat_p
9
...
Theorem
nat_10
nat_10
:
nat_p
10
...
Known
In_4_7
In_4_7
:
4
∈
7
Theorem
54668..
not_TwoRamseyProp_3_7_Power_3
:
not
(
TwoRamseyProp
3
7
(
prim4
3
)
)
...
Known
In_4_8
In_4_8
:
4
∈
8
Theorem
df26e..
not_TwoRamseyProp_3_8_Power_3
:
not
(
TwoRamseyProp
3
8
(
prim4
3
)
)
...
Known
In_4_9
In_4_9
:
4
∈
9
Theorem
69d43..
not_TwoRamseyProp_3_9_Power_3
:
not
(
TwoRamseyProp
3
9
(
prim4
3
)
)
...
Known
nat_ordsucc_in_ordsucc
nat_ordsucc_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Known
In_3_9
In_3_9
:
3
∈
9
Theorem
35ffd..
:
4
∈
10
...
Theorem
7f909..
not_TwoRamseyProp_3_10_Power_3
:
not
(
TwoRamseyProp
3
10
(
prim4
3
)
)
...
Known
nat_4
nat_4
:
nat_p
4
Known
In_3_4
In_3_4
:
3
∈
4
Theorem
ce62b..
not_TwoRamseyProp_4_4_Power_3
:
not
(
TwoRamseyProp
4
4
(
prim4
3
)
)
...
Theorem
fe972..
not_TwoRamseyProp_4_5_Power_3
:
not
(
TwoRamseyProp
4
5
(
prim4
3
)
)
...
Theorem
33278..
not_TwoRamseyProp_4_6_Power_3
:
not
(
TwoRamseyProp
4
6
(
prim4
3
)
)
...
Theorem
e1864..
not_TwoRamseyProp_4_7_Power_3
:
not
(
TwoRamseyProp
4
7
(
prim4
3
)
)
...
Theorem
95a55..
not_TwoRamseyProp_4_8_Power_3
:
not
(
TwoRamseyProp
4
8
(
prim4
3
)
)
...
Theorem
8b769..
not_TwoRamseyProp_4_9_Power_3
:
not
(
TwoRamseyProp
4
9
(
prim4
3
)
)
...
Known
In_3_5
In_3_5
:
3
∈
5
Theorem
cd2fd..
not_TwoRamseyProp_5_5_Power_3
:
not
(
TwoRamseyProp
5
5
(
prim4
3
)
)
...
Theorem
eff2c..
not_TwoRamseyProp_5_6_Power_3
:
not
(
TwoRamseyProp
5
6
(
prim4
3
)
)
...
Theorem
73405..
not_TwoRamseyProp_5_7_Power_3
:
not
(
TwoRamseyProp
5
7
(
prim4
3
)
)
...
Theorem
41978..
not_TwoRamseyProp_5_8_Power_3
:
not
(
TwoRamseyProp
5
8
(
prim4
3
)
)
...
Known
In_3_6
In_3_6
:
3
∈
6
Theorem
3de2e..
not_TwoRamseyProp_6_6_Power_3
:
not
(
TwoRamseyProp
6
6
(
prim4
3
)
)
...
Theorem
84f84..
not_TwoRamseyProp_6_7_Power_3
:
not
(
TwoRamseyProp
6
7
(
prim4
3
)
)
...