Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrSHK../28543..
PUcMn../32ce1..
vout
PrSHK../33fa1.. 23.98 bars
PUWXQ../37938.. doc published by PrGxv..
Param intint : ι
Param mul_SNomul_SNo : ιιι
Param ordsuccordsucc : ιι
Param add_SNoadd_SNo : ιιι
Param If_iIf_i : οιιι
Param SNoLeSNoLe : ιιο
Param minus_SNominus_SNo : ιι
Conjecture c936f..A14905 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)(∀ x17 . x17intx0 x17 = mul_SNo 2 (add_SNo 2 x17))x1 = 2x2 = 2(∀ x17 . x17int∀ x18 . x18intx3 x17 x18 = If_i (SNoLe x17 0) x18 (x0 (x3 (add_SNo x17 (minus_SNo 1)) x18)))x4 = x3 x1 x2(∀ x17 . x17int∀ x18 . x18intx5 x17 x18 = add_SNo 1 (add_SNo (add_SNo (mul_SNo x4 x17) x17) x18))(∀ x17 . x17intx6 x17 = x17)x7 = 1(∀ x17 . x17int∀ x18 . x18intx8 x17 x18 = If_i (SNoLe x17 0) x18 (x5 (x8 (add_SNo x17 (minus_SNo 1)) x18) x17))(∀ x17 . x17intx9 x17 = x8 (x6 x17) x7)(∀ x17 . x17intx10 x17 = x9 x17)(∀ x17 . x17int∀ x18 . x18intx11 x17 x18 = mul_SNo (add_SNo 1 (mul_SNo 2 (add_SNo 2 (mul_SNo 2 (add_SNo 2 2))))) (add_SNo x17 x18))(∀ x17 . x17intx12 x17 = x17)x13 = 0(∀ x17 . x17int∀ x18 . x18intx14 x17 x18 = If_i (SNoLe x17 0) x18 (x11 (x14 (add_SNo x17 (minus_SNo 1)) x18) x17))(∀ x17 . x17intx15 x17 = x14 (x12 x17) x13)(∀ x17 . x17intx16 x17 = add_SNo (x15 x17) (add_SNo 1 x17))∀ x17 . x17intSNoLe 0 x17x10 x17 = x16 x17
Conjecture 7fd24..A14904 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)(∀ x17 . x17intx0 x17 = mul_SNo 2 (add_SNo 2 x17))x1 = 2x2 = 2(∀ x17 . x17int∀ x18 . x18intx3 x17 x18 = If_i (SNoLe x17 0) x18 (x0 (x3 (add_SNo x17 (minus_SNo 1)) x18)))x4 = x3 x1 x2(∀ x17 . x17int∀ x18 . x18intx5 x17 x18 = add_SNo 1 (add_SNo (mul_SNo x4 x17) x18))(∀ x17 . x17intx6 x17 = x17)x7 = 1(∀ x17 . x17int∀ x18 . x18intx8 x17 x18 = If_i (SNoLe x17 0) x18 (x5 (x8 (add_SNo x17 (minus_SNo 1)) x18) x17))(∀ x17 . x17intx9 x17 = x8 (x6 x17) x7)(∀ x17 . x17intx10 x17 = x9 x17)(∀ x17 . x17int∀ x18 . x18intx11 x17 x18 = add_SNo (mul_SNo (mul_SNo 2 (add_SNo 2 (mul_SNo 2 (add_SNo 2 2)))) x17) x18)(∀ x17 . x17intx12 x17 = add_SNo 1 x17)x13 = 0(∀ x17 . x17int∀ x18 . x18intx14 x17 x18 = If_i (SNoLe x17 0) x18 (x11 (x14 (add_SNo x17 (minus_SNo 1)) x18) x17))(∀ x17 . x17intx15 x17 = x14 (x12 x17) x13)(∀ x17 . x17intx16 x17 = x15 x17)∀ x17 . x17intSNoLe 0 x17x10 x17 = x16 x17
Conjecture 6b815..A145721 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 . x15int∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28intx0 x28 = mul_SNo (add_SNo 1 (add_SNo 2 2)) (add_SNo 1 x28))x1 = add_SNo 2 2x2 = 2(∀ x28 . x28int∀ x29 . x29intx3 x28 x29 = If_i (SNoLe x28 0) x29 (x0 (x3 (add_SNo x28 (minus_SNo 1)) x29)))x4 = x3 x1 x2(∀ x28 . x28int∀ x29 . x29intx5 x28 x29 = add_SNo (mul_SNo x4 x28) (minus_SNo x29))(∀ x28 . x28intx6 x28 = x28)(∀ x28 . x28intx7 x28 = x28)x8 = 1x9 = 1(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx10 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x5 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30) (x11 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx11 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x6 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx12 x28 = x10 (x7 x28) x8 x9)(∀ x28 . x28intx13 x28 = x12 x28)(∀ x28 . x28intx14 x28 = add_SNo (mul_SNo (mul_SNo (add_SNo 2 x28) x28) x28) x28)x15 = 1x16 = mul_SNo 2 (add_SNo 2 (add_SNo 2 2))(∀ x28 . x28int∀ x29 . x29intx17 x28 x29 = If_i (SNoLe x28 0) x29 (x14 (x17 (add_SNo x28 (minus_SNo 1)) x29)))x18 = x17 x15 x16(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = add_SNo (mul_SNo (add_SNo 2 x18) x28) (minus_SNo x29))(∀ x28 . x28intx20 x28 = x28)(∀ x28 . x28intx21 x28 = x28)x22 = 1x23 = 1(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 x23)(∀ x28 . x28intx27 x28 = x26 x28)∀ x28 . x28intSNoLe 0 x28x13 x28 = x27 x28
Conjecture 405d5..A145699 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 . x15int∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28intx0 x28 = add_SNo 2 (mul_SNo (add_SNo 1 2) (mul_SNo x28 x28)))x1 = 2x2 = 2(∀ x28 . x28int∀ x29 . x29intx3 x28 x29 = If_i (SNoLe x28 0) x29 (x0 (x3 (add_SNo x28 (minus_SNo 1)) x29)))x4 = x3 x1 x2(∀ x28 . x28int∀ x29 . x29intx5 x28 x29 = add_SNo (mul_SNo x4 x28) (minus_SNo x29))(∀ x28 . x28intx6 x28 = x28)(∀ x28 . x28intx7 x28 = x28)x8 = 1x9 = 1(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx10 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x5 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30) (x11 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx11 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x6 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx12 x28 = x10 (x7 x28) x8 x9)(∀ x28 . x28intx13 x28 = x12 x28)(∀ x28 . x28intx14 x28 = mul_SNo x28 x28)x15 = 1x16 = add_SNo 2 (mul_SNo 2 (add_SNo 2 (add_SNo 2 2)))(∀ x28 . x28int∀ x29 . x29intx17 x28 x29 = If_i (SNoLe x28 0) x29 (x14 (x17 (add_SNo x28 (minus_SNo 1)) x29)))x18 = x17 x15 x16(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = add_SNo (mul_SNo (add_SNo 2 (mul_SNo (add_SNo 1 2) x18)) x28) (minus_SNo x29))(∀ x28 . x28intx20 x28 = x28)(∀ x28 . x28intx21 x28 = x28)x22 = 1x23 = 1(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 x23)(∀ x28 . x28intx27 x28 = x26 x28)∀ x28 . x28intSNoLe 0 x28x13 x28 = x27 x28
Conjecture b9225..A145529 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 . x6int∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 . x9int∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 . x14int∀ x15 : ι → ι → ι → ι . (∀ x16 . x16int∀ x17 . x17int∀ x18 . x18intx15 x16 x17 x18int)∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 . x20int∀ x21 . x21int∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 . x23int∀ x24 : ι → ι → ι . (∀ x25 . x25int∀ x26 . x26intx24 x25 x26int)∀ x25 : ι → ι . (∀ x26 . x26intx25 x26int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 . x27int∀ x28 . x28int∀ x29 : ι → ι → ι → ι . (∀ x30 . x30int∀ x31 . x31int∀ x32 . x32intx29 x30 x31 x32int)∀ x30 : ι → ι → ι → ι . (∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx30 x31 x32 x33int)∀ x31 : ι → ι . (∀ x32 . x32intx31 x32int)∀ x32 : ι → ι . (∀ x33 . x33intx32 x33int)(∀ x33 . x33intx0 x33 = mul_SNo x33 x33)x1 = 2x2 = 2(∀ x33 . x33int∀ x34 . x34intx3 x33 x34 = If_i (SNoLe x33 0) x34 (x0 (x3 (add_SNo x33 (minus_SNo 1)) x34)))x4 = x3 x1 x2(∀ x33 . x33intx5 x33 = add_SNo (mul_SNo (add_SNo (add_SNo x33 (minus_SNo 1)) x33) x4) (minus_SNo 2))x6 = 2x7 = 2(∀ x33 . x33int∀ x34 . x34intx8 x33 x34 = If_i (SNoLe x33 0) x34 (x5 (x8 (add_SNo x33 (minus_SNo 1)) x34)))x9 = x8 x6 x7(∀ x33 . x33int∀ x34 . x34intx10 x33 x34 = add_SNo (mul_SNo x9 x33) (minus_SNo x34))(∀ x33 . x33intx11 x33 = x33)(∀ x33 . x33intx12 x33 = x33)x13 = 1x14 = 1(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx15 x33 x34 x35 = If_i (SNoLe x33 0) x34 (x10 (x15 (add_SNo x33 (minus_SNo 1)) x34 x35) (x16 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx16 x33 x34 x35 = If_i (SNoLe x33 0) x35 (x11 (x15 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33intx17 x33 = x15 (x12 x33) x13 x14)(∀ x33 . x33intx18 x33 = x17 x33)(∀ x33 . x33intx19 x33 = mul_SNo (mul_SNo x33 x33) x33)x20 = 1x21 = add_SNo 1 (mul_SNo 2 (add_SNo 2 2))(∀ x33 . x33int∀ x34 . x34intx22 x33 x34 = If_i (SNoLe x33 0) x34 (x19 (x22 (add_SNo x33 (minus_SNo 1)) x34)))x23 = x22 x20 x21(∀ x33 . x33int∀ x34 . x34intx24 x33 x34 = add_SNo (mul_SNo (mul_SNo 2 (add_SNo x23 (minus_SNo 2))) x33) (minus_SNo x34))(∀ x33 . x33intx25 x33 = x33)(∀ x33 . x33intx26 x33 = x33)x27 = 1x28 = 1(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx29 x33 x34 x35 = If_i (SNoLe x33 0) x34 (x24 (x29 (add_SNo x33 (minus_SNo 1)) x34 x35) (x30 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx30 x33 x34 x35 = If_i (SNoLe x33 0) x35 (x25 (x29 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33intx31 x33 = x29 (x26 x33) x27 x28)(∀ x33 . x33intx32 x33 = x31 x33)∀ x33 . x33intSNoLe 0 x33x18 x33 = x32 x33
Conjecture beedd..A145123 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 . x15int∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28intx0 x28 = add_SNo 2 (add_SNo (mul_SNo 2 (mul_SNo x28 x28)) x28))x1 = 2x2 = 2(∀ x28 . x28int∀ x29 . x29intx3 x28 x29 = If_i (SNoLe x28 0) x29 (x0 (x3 (add_SNo x28 (minus_SNo 1)) x29)))x4 = x3 x1 x2(∀ x28 . x28int∀ x29 . x29intx5 x28 x29 = add_SNo (mul_SNo x4 x28) (minus_SNo x29))(∀ x28 . x28intx6 x28 = x28)(∀ x28 . x28intx7 x28 = x28)x8 = 1x9 = 1(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx10 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x5 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30) (x11 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx11 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x6 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx12 x28 = x10 (x7 x28) x8 x9)(∀ x28 . x28intx13 x28 = x12 x28)(∀ x28 . x28intx14 x28 = mul_SNo x28 x28)x15 = 1x16 = add_SNo 2 (mul_SNo 2 (add_SNo 2 2))(∀ x28 . x28int∀ x29 . x29intx17 x28 x29 = If_i (SNoLe x28 0) x29 (x14 (x17 (add_SNo x28 (minus_SNo 1)) x29)))x18 = x17 x15 x16(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = add_SNo (mul_SNo (add_SNo 2 (mul_SNo (add_SNo 1 2) x18)) x28) (minus_SNo x29))(∀ x28 . x28intx20 x28 = x28)(∀ x28 . x28intx21 x28 = x28)x22 = 1x23 = 1(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 x23)(∀ x28 . x28intx27 x28 = x26 x28)∀ x28 . x28intSNoLe 0 x28x13 x28 = x27 x28
Conjecture 4f6ec..A144829 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι → ι . (∀ x3 . x3int∀ x4 . x4intx2 x3 x4int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20int∀ x21 . x21intx0 x20 x21 = add_SNo (add_SNo (add_SNo x20 (minus_SNo x21)) x20) x20)x1 = 2(∀ x20 . x20int∀ x21 . x21intx2 x20 x21 = x21)(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21) x20))(∀ x20 . x20int∀ x21 . x21intx4 x20 x21 = x3 x1 (x2 x20 x21))(∀ x20 . x20int∀ x21 . x21intx5 x20 x21 = mul_SNo (x4 x20 x21) x20)(∀ x20 . x20intx6 x20 = x20)x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = If_i (SNoLe x20 0) x21 (x5 (x8 (add_SNo x20 (minus_SNo 1)) x21) x20))(∀ x20 . x20intx9 x20 = x8 (x6 x20) x7)(∀ x20 . x20intx10 x20 = x9 x20)(∀ x20 . x20int∀ x21 . x21intx11 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx12 x20 x21 = add_SNo 1 (add_SNo (mul_SNo 2 (add_SNo 2 2)) x21))(∀ x20 . x20intx13 x20 = x20)x14 = 1x15 = add_SNo 2 2(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx16 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x11 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx17 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x12 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx18 x20 = x16 (x13 x20) x14 x15)(∀ x20 . x20intx19 x20 = x18 x20)∀ x20 . x20intSNoLe 0 x20x10 x20 = x19 x20
Conjecture b10de..A14479 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)(∀ x12 . x12int∀ x13 . x13intx0 x12 x13 = mul_SNo 2 (add_SNo (mul_SNo x12 x13) x12))(∀ x12 . x12intx1 x12 = x12)(∀ x12 . x12intx2 x12 = add_SNo 1 x12)(∀ x12 . x12int∀ x13 . x13intx3 x12 x13 = If_i (SNoLe x12 0) x13 (x0 (x3 (add_SNo x12 (minus_SNo 1)) x13) x12))(∀ x12 . x12intx4 x12 = x3 (x1 x12) (x2 x12))(∀ x12 . x12intx5 x12 = x4 x12)(∀ x12 . x12int∀ x13 . x13intx6 x12 x13 = mul_SNo 2 (mul_SNo x12 x13))(∀ x12 . x12intx7 x12 = x12)x8 = 1(∀ x12 . x12int∀ x13 . x13intx9 x12 x13 = If_i (SNoLe x12 0) x13 (x6 (x9 (add_SNo x12 (minus_SNo 1)) x13) x12))(∀ x12 . x12intx10 x12 = x9 (x7 x12) x8)(∀ x12 . x12intx11 x12 = mul_SNo (add_SNo 1 (mul_SNo (add_SNo 2 x12) x12)) (x10 x12))∀ x12 . x12intSNoLe 0 x12x5 x12 = x11 x12
Conjecture d70e8..A144345 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι → ι . (∀ x16 . x16int∀ x17 . x17intx15 x16 x17int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)(∀ x22 . x22int∀ x23 . x23intx0 x22 x23 = add_SNo (mul_SNo (add_SNo 1 2) (mul_SNo x22 x23)) (minus_SNo x22))(∀ x22 . x22int∀ x23 . x23intx1 x22 x23 = x23)x2 = 1(∀ x22 . x22int∀ x23 . x23intx3 x22 x23 = If_i (SNoLe x22 0) x23 (x0 (x3 (add_SNo x22 (minus_SNo 1)) x23) x22))(∀ x22 . x22int∀ x23 . x23intx4 x22 x23 = x3 (x1 x22 x23) x2)(∀ x22 . x22int∀ x23 . x23intx5 x22 x23 = add_SNo (add_SNo (x4 x22 x23) (mul_SNo (add_SNo 1 2) (mul_SNo x22 x23))) x22)(∀ x22 . x22intx6 x22 = x22)x7 = 1(∀ x22 . x22int∀ x23 . x23intx8 x22 x23 = If_i (SNoLe x22 0) x23 (x5 (x8 (add_SNo x22 (minus_SNo 1)) x23) x22))(∀ x22 . x22intx9 x22 = x8 (x6 x22) x7)(∀ x22 . x22intx10 x22 = x9 x22)(∀ x22 . x22int∀ x23 . x23intx11 x22 x23 = add_SNo (mul_SNo (add_SNo 1 2) (mul_SNo x22 x23)) (minus_SNo x22))(∀ x22 . x22int∀ x23 . x23intx12 x22 x23 = x23)x13 = 1(∀ x22 . x22int∀ x23 . x23intx14 x22 x23 = If_i (SNoLe x22 0) x23 (x11 (x14 (add_SNo x22 (minus_SNo 1)) x23) x22))(∀ x22 . x22int∀ x23 . x23intx15 x22 x23 = x14 (x12 x22 x23) x13)(∀ x22 . x22int∀ x23 . x23intx16 x22 x23 = add_SNo (x15 x22 x23) (mul_SNo (add_SNo (add_SNo (add_SNo x23 x23) x23) 1) x22))(∀ x22 . x22intx17 x22 = x22)x18 = 1(∀ x22 . x22int∀ x23 . x23intx19 x22 x23 = If_i (SNoLe x22 0) x23 (x16 (x19 (add_SNo x22 (minus_SNo 1)) x23) x22))(∀ x22 . x22intx20 x22 = x19 (x17 x22) x18)(∀ x22 . x22intx21 x22 = x20 x22)∀ x22 . x22intSNoLe 0 x22x10 x22 = x21 x22
Conjecture 0298d..A14401 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 . x7int∀ x8 . x8int∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 . x21int∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι → ι . (∀ x25 . x25int∀ x26 . x26intx24 x25 x26int)∀ x25 : ι → ι . (∀ x26 . x26intx25 x26int)∀ x26 . x26int∀ x27 : ι → ι → ι . (∀ x28 . x28int∀ x29 . x29intx27 x28 x29int)∀ x28 : ι → ι . (∀ x29 . x29intx28 x29int)∀ x29 : ι → ι . (∀ x30 . x30intx29 x30int)(∀ x30 . x30int∀ x31 . x31intx0 x30 x31 = mul_SNo 2 (mul_SNo x30 x31))(∀ x30 . x30int∀ x31 . x31intx1 x30 x31 = x31)(∀ x30 . x30intx2 x30 = x30)(∀ x30 . x30int∀ x31 . x31intx3 x30 x31 = If_i (SNoLe x30 0) x31 (x0 (x3 (add_SNo x30 (minus_SNo 1)) x31) x30))(∀ x30 . x30int∀ x31 . x31intx4 x30 x31 = x3 (x1 x30 x31) (x2 x30))(∀ x30 . x30int∀ x31 . x31intx5 x30 x31 = x4 x30 x31)(∀ x30 . x30int∀ x31 . x31intx6 x30 x31 = add_SNo (add_SNo 1 2) x31)x7 = 2x8 = 1(∀ x30 . x30intx9 x30 = x30)(∀ x30 . x30int∀ x31 . x31int∀ x32 . x32intx10 x30 x31 x32 = If_i (SNoLe x30 0) x31 (x5 (x10 (add_SNo x30 (minus_SNo 1)) x31 x32) (x11 (add_SNo x30 (minus_SNo 1)) x31 x32)))(∀ x30 . x30int∀ x31 . x31int∀ x32 . x32intx11 x30 x31 x32 = If_i (SNoLe x30 0) x32 (x6 (x10 (add_SNo x30 (minus_SNo 1)) x31 x32) (x11 (add_SNo x30 (minus_SNo 1)) x31 x32)))(∀ x30 . x30intx12 x30 = x10 x7 x8 (x9 x30))(∀ x30 . x30intx13 x30 = x12 x30)(∀ x30 . x30int∀ x31 . x31intx14 x30 x31 = mul_SNo 2 (mul_SNo x30 x31))(∀ x30 . x30intx15 x30 = add_SNo 1 (add_SNo 2 x30))x16 = 1(∀ x30 . x30int∀ x31 . x31intx17 x30 x31 = If_i (SNoLe x30 0) x31 (x14 (x17 (add_SNo x30 (minus_SNo 1)) x31) x30))(∀ x30 . x30intx18 x30 = x17 (x15 x30) x16)(∀ x30 . x30intx19 x30 = add_SNo x30 x30)(∀ x30 . x30intx20 x30 = x30)x21 = 1(∀ x30 . x30int∀ x31 . x31intx22 x30 x31 = If_i (SNoLe x30 0) x31 (x19 (x22 (add_SNo x30 (minus_SNo 1)) x31)))(∀ x30 . x30intx23 x30 = x22 (x20 x30) x21)(∀ x30 . x30int∀ x31 . x31intx24 x30 x31 = mul_SNo x30 x31)(∀ x30 . x30intx25 x30 = x30)x26 = 1(∀ x30 . x30int∀ x31 . x31intx27 x30 x31 = If_i (SNoLe x30 0) x31 (x24 (x27 (add_SNo x30 (minus_SNo 1)) x31) x30))(∀ x30 . x30intx28 x30 = x27 (x25 x30) x26)(∀ x30 . x30intx29 x30 = mul_SNo (mul_SNo (x18 x30) (x23 x30)) (x28 x30))∀ x30 . x30intSNoLe 0 x30x13 x30 = x29 x30
Conjecture f3eab..A143248 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)(∀ x17 . x17int∀ x18 . x18intx0 x17 x18 = mul_SNo (add_SNo 1 x18) (mul_SNo (add_SNo 2 x18) x17))(∀ x17 . x17intx1 x17 = x17)x2 = 2(∀ x17 . x17int∀ x18 . x18intx3 x17 x18 = If_i (SNoLe x17 0) x18 (x0 (x3 (add_SNo x17 (minus_SNo 1)) x18) x17))(∀ x17 . x17intx4 x17 = x3 (x1 x17) x2)(∀ x17 . x17intx5 x17 = If_i (SNoLe x17 0) 0 (x4 x17))(∀ x17 . x17intx6 x17 = mul_SNo x17 x17)x7 = 1(∀ x17 . x17int∀ x18 . x18intx8 x17 x18 = mul_SNo x17 x18)(∀ x17 . x17intx9 x17 = add_SNo x17 (minus_SNo 1))(∀ x17 . x17intx10 x17 = x17)(∀ x17 . x17int∀ x18 . x18intx11 x17 x18 = If_i (SNoLe x17 0) x18 (x8 (x11 (add_SNo x17 (minus_SNo 1)) x18) x17))(∀ x17 . x17intx12 x17 = x11 (x9 x17) (x10 x17))(∀ x17 . x17intx13 x17 = mul_SNo (add_SNo 1 x17) (x12 x17))(∀ x17 . x17int∀ x18 . x18intx14 x17 x18 = If_i (SNoLe x17 0) x18 (x6 (x14 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx15 x17 = x14 x7 (x13 x17))(∀ x17 . x17intx16 x17 = mul_SNo (x15 x17) (add_SNo 2 x17))∀ x17 . x17intSNoLe 0 x17x5 x17 = x16 x17
Conjecture 8c305..A14298 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι → ι . (∀ x3 . x3int∀ x4 . x4intx2 x3 x4int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 . x5int∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι → ι → ι . (∀ x8 . x8int∀ x9 . x9int∀ x10 . x10intx7 x8 x9 x10int)∀ x8 : ι → ι → ι → ι . (∀ x9 . x9int∀ x10 . x10int∀ x11 . x11intx8 x9 x10 x11int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι → ι . (∀ x21 . x21int∀ x22 . x22intx20 x21 x22int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28intx0 x28 = add_SNo x28 x28)(∀ x28 . x28intx1 x28 = x28)(∀ x28 . x28int∀ x29 . x29intx2 x28 x29 = mul_SNo x28 x29)(∀ x28 . x28int∀ x29 . x29intx3 x28 x29 = add_SNo 1 x29)(∀ x28 . x28intx4 x28 = add_SNo x28 (minus_SNo 1))x5 = 1(∀ x28 . x28intx6 x28 = add_SNo 2 (add_SNo x28 x28))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx7 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x2 (x7 (add_SNo x28 (minus_SNo 1)) x29 x30) (x8 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx8 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x3 (x7 (add_SNo x28 (minus_SNo 1)) x29 x30) (x8 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx9 x28 = x7 (x4 x28) x5 (x6 x28))(∀ x28 . x28intx10 x28 = x9 x28)(∀ x28 . x28int∀ x29 . x29intx11 x28 x29 = If_i (SNoLe x28 0) x29 (x0 (x11 (add_SNo x28 (minus_SNo 1)) x29)))(∀ x28 . x28intx12 x28 = x11 (x1 x28) (x10 x28))(∀ x28 . x28intx13 x28 = x12 x28)(∀ x28 . x28intx14 x28 = add_SNo x28 x28)(∀ x28 . x28intx15 x28 = x28)x16 = 1(∀ x28 . x28int∀ x29 . x29intx17 x28 x29 = If_i (SNoLe x28 0) x29 (x14 (x17 (add_SNo x28 (minus_SNo 1)) x29)))(∀ x28 . x28intx18 x28 = x17 (x15 x28) x16)(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = mul_SNo x28 x29)(∀ x28 . x28int∀ x29 . x29intx20 x28 x29 = add_SNo 1 x29)(∀ x28 . x28intx21 x28 = add_SNo x28 (minus_SNo 1))x22 = 1(∀ x28 . x28intx23 x28 = add_SNo 2 (add_SNo x28 x28))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 (x23 x28))(∀ x28 . x28intx27 x28 = mul_SNo (x18 x28) (x26 x28))∀ x28 . x28intSNoLe 0 x28x13 x28 = x27 x28
Conjecture 78fb1..A14297 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)(∀ x17 . x17int∀ x18 . x18intx0 x17 x18 = mul_SNo 2 (mul_SNo (add_SNo 2 x18) x17))(∀ x17 . x17intx1 x17 = x17)x2 = 2(∀ x17 . x17int∀ x18 . x18intx3 x17 x18 = If_i (SNoLe x17 0) x18 (x0 (x3 (add_SNo x17 (minus_SNo 1)) x18) x17))(∀ x17 . x17intx4 x17 = x3 (x1 x17) x2)(∀ x17 . x17intx5 x17 = x4 x17)(∀ x17 . x17intx6 x17 = add_SNo x17 x17)(∀ x17 . x17intx7 x17 = x17)(∀ x17 . x17intx8 x17 = add_SNo 1 x17)(∀ x17 . x17int∀ x18 . x18intx9 x17 x18 = If_i (SNoLe x17 0) x18 (x6 (x9 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx10 x17 = x9 (x7 x17) (x8 x17))(∀ x17 . x17int∀ x18 . x18intx11 x17 x18 = mul_SNo x17 x18)(∀ x17 . x17intx12 x17 = x17)(∀ x17 . x17intx13 x17 = add_SNo 2 x17)(∀ x17 . x17int∀ x18 . x18intx14 x17 x18 = If_i (SNoLe x17 0) x18 (x11 (x14 (add_SNo x17 (minus_SNo 1)) x18) x17))(∀ x17 . x17intx15 x17 = x14 (x12 x17) (x13 x17))(∀ x17 . x17intx16 x17 = mul_SNo (x10 x17) (x15 x17))∀ x17 . x17intSNoLe 0 x17x5 x17 = x16 x17
Conjecture dd117..A14286 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι → ι → ι . (∀ x16 . x16int∀ x17 . x17int∀ x18 . x18intx15 x16 x17 x18int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)(∀ x18 . x18int∀ x19 . x19intx0 x18 x19 = add_SNo (add_SNo x18 (minus_SNo 1)) x19)(∀ x18 . x18intx1 x18 = add_SNo x18 (minus_SNo 1))(∀ x18 . x18intx2 x18 = x18)(∀ x18 . x18intx3 x18 = x18)(∀ x18 . x18intx4 x18 = x18)(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx5 x18 x19 x20 = If_i (SNoLe x18 0) x19 (x0 (x5 (add_SNo x18 (minus_SNo 1)) x19 x20) (x6 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx6 x18 x19 x20 = If_i (SNoLe x18 0) x20 (x1 (x5 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18intx7 x18 = x5 (x2 x18) (x3 x18) (x4 x18))(∀ x18 . x18intx8 x18 = x7 x18)(∀ x18 . x18int∀ x19 . x19intx9 x18 x19 = add_SNo x18 x19)(∀ x18 . x18intx10 x18 = x18)(∀ x18 . x18intx11 x18 = x18)(∀ x18 . x18intx12 x18 = add_SNo x18 (minus_SNo 2))(∀ x18 . x18intx13 x18 = add_SNo x18 (minus_SNo 1))(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx14 x18 x19 x20 = If_i (SNoLe x18 0) x19 (x9 (x14 (add_SNo x18 (minus_SNo 1)) x19 x20) (x15 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx15 x18 x19 x20 = If_i (SNoLe x18 0) x20 (x10 (x14 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18intx16 x18 = x14 (x11 x18) (x12 x18) (x13 x18))(∀ x18 . x18intx17 x18 = add_SNo 2 (x16 x18))∀ x18 . x18intSNoLe 0 x18x8 x18 = x17 x18
Conjecture af7d0..A14145 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 . x19int∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι → ι → ι . (∀ x22 . x22int∀ x23 . x23int∀ x24 . x24intx21 x22 x23 x24int)∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25int∀ x26 . x26intx0 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx1 x25 x26 = x26)x2 = 1(∀ x25 . x25int∀ x26 . x26intx3 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x3 (add_SNo x25 (minus_SNo 1)) x26) x25))(∀ x25 . x25int∀ x26 . x26intx4 x25 x26 = x3 (x1 x25 x26) x2)(∀ x25 . x25int∀ x26 . x26intx5 x25 x26 = add_SNo (x4 x25 x26) x25)(∀ x25 . x25int∀ x26 . x26intx6 x25 x26 = x26)(∀ x25 . x25intx7 x25 = x25)(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x5 (x8 (add_SNo x25 (minus_SNo 1)) x26) x25))(∀ x25 . x25int∀ x26 . x26intx9 x25 x26 = x8 (x6 x25 x26) (x7 x25))(∀ x25 . x25int∀ x26 . x26intx10 x25 x26 = x9 x25 x26)(∀ x25 . x25intx11 x25 = x25)x12 = 0(∀ x25 . x25int∀ x26 . x26intx13 x25 x26 = If_i (SNoLe x25 0) x26 (x10 (x13 (add_SNo x25 (minus_SNo 1)) x26) x25))(∀ x25 . x25intx14 x25 = x13 (x11 x25) x12)(∀ x25 . x25intx15 x25 = x14 x25)(∀ x25 . x25int∀ x26 . x26intx16 x25 x26 = add_SNo 1 (mul_SNo x25 x26))(∀ x25 . x25int∀ x26 . x26intx17 x25 x26 = add_SNo x26 (minus_SNo 1))(∀ x25 . x25intx18 x25 = x25)x19 = 0(∀ x25 . x25intx20 x25 = x25)(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx21 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x16 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx22 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x17 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx23 x25 = x21 (x18 x25) x19 (x20 x25))(∀ x25 . x25intx24 x25 = add_SNo (mul_SNo (x23 x25) (add_SNo 1 x25)) (minus_SNo x25))∀ x25 . x25intSNoLe 0 x25x15 x25 = x24 x25
Conjecture 14541..A14144 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 . x19int∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι → ι → ι . (∀ x22 . x22int∀ x23 . x23int∀ x24 . x24intx21 x22 x23 x24int)∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι → ι . (∀ x25 . x25int∀ x26 . x26intx24 x25 x26int)∀ x25 : ι → ι . (∀ x26 . x26intx25 x26int)∀ x26 . x26int∀ x27 : ι → ι → ι . (∀ x28 . x28int∀ x29 . x29intx27 x28 x29int)∀ x28 : ι → ι . (∀ x29 . x29intx28 x29int)∀ x29 : ι → ι . (∀ x30 . x30intx29 x30int)(∀ x30 . x30int∀ x31 . x31intx0 x30 x31 = mul_SNo x30 x31)(∀ x30 . x30int∀ x31 . x31intx1 x30 x31 = add_SNo x31 (minus_SNo 1))x2 = 1(∀ x30 . x30int∀ x31 . x31intx3 x30 x31 = If_i (SNoLe x30 0) x31 (x0 (x3 (add_SNo x30 (minus_SNo 1)) x31) x30))(∀ x30 . x30int∀ x31 . x31intx4 x30 x31 = x3 (x1 x30 x31) x2)(∀ x30 . x30int∀ x31 . x31intx5 x30 x31 = add_SNo (x4 x30 x31) x30)(∀ x30 . x30int∀ x31 . x31intx6 x30 x31 = x31)(∀ x30 . x30intx7 x30 = x30)(∀ x30 . x30int∀ x31 . x31intx8 x30 x31 = If_i (SNoLe x30 0) x31 (x5 (x8 (add_SNo x30 (minus_SNo 1)) x31) x30))(∀ x30 . x30int∀ x31 . x31intx9 x30 x31 = x8 (x6 x30 x31) (x7 x30))(∀ x30 . x30int∀ x31 . x31intx10 x30 x31 = x9 x30 x31)(∀ x30 . x30intx11 x30 = x30)x12 = 0(∀ x30 . x30int∀ x31 . x31intx13 x30 x31 = If_i (SNoLe x30 0) x31 (x10 (x13 (add_SNo x30 (minus_SNo 1)) x31) x30))(∀ x30 . x30intx14 x30 = x13 (x11 x30) x12)(∀ x30 . x30intx15 x30 = x14 x30)(∀ x30 . x30int∀ x31 . x31intx16 x30 x31 = add_SNo 1 (mul_SNo x30 x31))(∀ x30 . x30int∀ x31 . x31intx17 x30 x31 = add_SNo x31 (minus_SNo 1))(∀ x30 . x30intx18 x30 = add_SNo x30 (minus_SNo 1))x19 = 0(∀ x30 . x30intx20 x30 = x30)(∀ x30 . x30int∀ x31 . x31int∀ x32 . x32intx21 x30 x31 x32 = If_i (SNoLe x30 0) x31 (x16 (x21 (add_SNo x30 (minus_SNo 1)) x31 x32) (x22 (add_SNo x30 (minus_SNo 1)) x31 x32)))(∀ x30 . x30int∀ x31 . x31int∀ x32 . x32intx22 x30 x31 x32 = If_i (SNoLe x30 0) x32 (x17 (x21 (add_SNo x30 (minus_SNo 1)) x31 x32) (x22 (add_SNo x30 (minus_SNo 1)) x31 x32)))(∀ x30 . x30intx23 x30 = x21 (x18 x30) x19 (x20 x30))(∀ x30 . x30int∀ x31 . x31intx24 x30 x31 = mul_SNo x30 x31)(∀ x30 . x30intx25 x30 = x30)x26 = 1(∀ x30 . x30int∀ x31 . x31intx27 x30 x31 = If_i (SNoLe x30 0) x31 (x24 (x27 (add_SNo x30 (minus_SNo 1)) x31) x30))(∀ x30 . x30intx28 x30 = x27 (x25 x30) x26)(∀ x30 . x30intx29 x30 = add_SNo (add_SNo (add_SNo (mul_SNo (x23 x30) x30) 1) (minus_SNo (x28 x30))) x30)∀ x30 . x30intSNoLe 0 x30x15 x30 = x29 x30
Conjecture 72ad9..A140961 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 . x9int∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 . x15int∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι → ι . (∀ x21 . x21int∀ x22 . x22intx20 x21 x22int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)∀ x28 : ι → ι . (∀ x29 . x29intx28 x29int)∀ x29 . x29int∀ x30 : ι → ι → ι . (∀ x31 . x31int∀ x32 . x32intx30 x31 x32int)∀ x31 : ι → ι . (∀ x32 . x32intx31 x32int)∀ x32 : ι → ι . (∀ x33 . x33intx32 x33int)∀ x33 . x33int∀ x34 : ι → ι → ι . (∀ x35 . x35int∀ x36 . x36intx34 x35 x36int)∀ x35 : ι → ι → ι . (∀ x36 . x36int∀ x37 . x37intx35 x36 x37int)∀ x36 : ι → ι → ι . (∀ x37 . x37int∀ x38 . x38intx36 x37 x38int)∀ x37 : ι → ι → ι . (∀ x38 . x38int∀ x39 . x39intx37 x38 x39int)∀ x38 : ι → ι . (∀ x39 . x39intx38 x39int)∀ x39 . x39int∀ x40 : ι → ι → ι . (∀ x41 . x41int∀ x42 . x42intx40 x41 x42int)∀ x41 : ι → ι . (∀ x42 . x42intx41 x42int)∀ x42 : ι → ι . (∀ x43 . x43intx42 x43int)(∀ x43 . x43int∀ x44 . x44intx0 x43 x44 = mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo x43 x43)) x44))(∀ x43 . x43int∀ x44 . x44intx1 x43 x44 = mul_SNo 2 (add_SNo (add_SNo x44 x44) x44))(∀ x43 . x43intx2 x43 = x43)x3 = 1x4 = 2(∀ x43 . x43int∀ x44 . x44int∀ x45 . x45intx5 x43 x44 x45 = If_i (SNoLe x43 0) x44 (x0 (x5 (add_SNo x43 (minus_SNo 1)) x44 x45) (x6 (add_SNo x43 (minus_SNo 1)) x44 x45)))(∀ x43 . x43int∀ x44 . x44int∀ x45 . x45intx6 x43 x44 x45 = If_i (SNoLe x43 0) x45 (x1 (x5 (add_SNo x43 (minus_SNo 1)) x44 x45) (x6 (add_SNo x43 (minus_SNo 1)) x44 x45)))(∀ x43 . x43intx7 x43 = x5 (x2 x43) x3 x4)(∀ x43 . x43intx8 x43 = x7 x43)x9 = 1(∀ x43 . x43int∀ x44 . x44intx10 x43 x44 = x44)(∀ x43 . x43int∀ x44 . x44intx11 x43 x44 = If_i (SNoLe x43 0) x44 (x8 (x11 (add_SNo x43 (minus_SNo 1)) x44)))(∀ x43 . x43int∀ x44 . x44intx12 x43 x44 = x11 x9 (x10 x43 x44))(∀ x43 . x43int∀ x44 . x44intx13 x43 x44 = add_SNo (add_SNo (x12 x43 x44) (mul_SNo 2 (add_SNo x43 x43))) x43)(∀ x43 . x43intx14 x43 = x43)x15 = 1(∀ x43 . x43int∀ x44 . x44intx16 x43 x44 = If_i (SNoLe x43 0) x44 (x13 (x16 (add_SNo x43 (minus_SNo 1)) x44) x43))(∀ x43 . x43intx17 x43 = x16 (x14 x43) x15)(∀ x43 . x43intx18 x43 = x17 x43)(∀ x43 . x43int∀ x44 . x44intx19 x43 x44 = add_SNo (mul_SNo 2 (add_SNo x43 x43)) x44)(∀ x43 . x43int∀ x44 . x44intx20 x43 x44 = add_SNo (add_SNo x44 x44) x44)(∀ x43 . x43intx21 x43 = x43)x22 = 1x23 = 2(∀ x43 . x43int∀ x44 . x44int∀ x45 . x45intx24 x43 x44 x45 = If_i (SNoLe x43 0) x44 (x19 (x24 (add_SNo x43 (minus_SNo 1)) x44 x45) (x25 (add_SNo x43 (minus_SNo 1)) x44 x45)))(∀ x43 . x43int∀ x44 . x44int∀ x45 . x45intx25 x43 x44 x45 = If_i (SNoLe x43 0) x45 (x20 (x24 (add_SNo x43 (minus_SNo 1)) x44 x45) (x25 (add_SNo x43 (minus_SNo 1)) x44 x45)))(∀ x43 . x43intx26 x43 = x24 (x21 x43) x22 x23)(∀ x43 . x43intx27 x43 = add_SNo x43 x43)(∀ x43 . x43intx28 x43 = x43)x29 = 1(∀ x43 . x43int∀ x44 . x44intx30 x43 x44 = If_i (SNoLe x43 0) x44 (x27 (x30 (add_SNo x43 (minus_SNo 1)) x44)))(∀ x43 . x43intx31 x43 = x30 (x28 x43) x29)(∀ x43 . x43intx32 x43 = mul_SNo (x26 x43) (x31 x43))x33 = 1(∀ x43 . x43int∀ x44 . x44intx34 x43 x44 = x44)(∀ x43 . x43int∀ x44 . x44intx35 x43 x44 = If_i (SNoLe x43 0) x44 (x32 (x35 (add_SNo x43 (minus_SNo 1)) x44)))(∀ x43 . x43int∀ x44 . x44intx36 x43 x44 = x35 x33 (x34 x43 x44))(∀ x43 . x43int∀ x44 . x44intx37 x43 x44 = add_SNo (add_SNo (x36 x43 x44) x43) (mul_SNo (add_SNo x43 x43) 2))(∀ x43 . x43intx38 x43 = x43)x39 = 1(∀ x43 . x43int∀ x44 . x44intx40 x43 x44 = If_i (SNoLe x43 0) x44 (x37 (x40 (add_SNo x43 (minus_SNo 1)) x44) x43))(∀ x43 . x43intx41 x43 = x40 (x38 x43) x39)(∀ x43 . x43intx42 x43 = x41 x43)∀ x43 . x43intSNoLe 0 x43x18 x43 = x42 x43
Conjecture b3cc8..A140529 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 . x10int∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)(∀ x17 . x17intx0 x17 = add_SNo 1 (add_SNo x17 x17))(∀ x17 . x17intx1 x17 = add_SNo 1 (add_SNo x17 x17))x2 = 2(∀ x17 . x17int∀ x18 . x18intx3 x17 x18 = If_i (SNoLe x17 0) x18 (x0 (x3 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx4 x17 = x3 (x1 x17) x2)(∀ x17 . x17intx5 x17 = x4 x17)(∀ x17 . x17intx6 x17 = mul_SNo x17 x17)x7 = 1(∀ x17 . x17intx8 x17 = add_SNo x17 x17)(∀ x17 . x17intx9 x17 = x17)x10 = 1(∀ x17 . x17int∀ x18 . x18intx11 x17 x18 = If_i (SNoLe x17 0) x18 (x8 (x11 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx12 x17 = x11 (x9 x17) x10)(∀ x17 . x17intx13 x17 = x12 x17)(∀ x17 . x17int∀ x18 . x18intx14 x17 x18 = If_i (SNoLe x17 0) x18 (x6 (x14 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx15 x17 = x14 x7 (x13 x17))(∀ x17 . x17intx16 x17 = add_SNo (mul_SNo 2 (mul_SNo (add_SNo 1 2) (x15 x17))) (minus_SNo 1))∀ x17 . x17intSNoLe 0 x17x5 x17 = x16 x17
Conjecture 23b63..A140230 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι → ι → ι . (∀ x16 . x16int∀ x17 . x17int∀ x18 . x18intx15 x16 x17 x18int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)(∀ x18 . x18int∀ x19 . x19intx0 x18 x19 = add_SNo x18 x19)(∀ x18 . x18int∀ x19 . x19intx1 x18 x19 = add_SNo x19 (minus_SNo x18))(∀ x18 . x18intx2 x18 = x18)(∀ x18 . x18intx3 x18 = add_SNo 1 x18)x4 = 1(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx5 x18 x19 x20 = If_i (SNoLe x18 0) x19 (x0 (x5 (add_SNo x18 (minus_SNo 1)) x19 x20) (x6 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx6 x18 x19 x20 = If_i (SNoLe x18 0) x20 (x1 (x5 (add_SNo x18 (minus_SNo 1)) x19 x20) (x6 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18intx7 x18 = x5 (x2 x18) (x3 x18) x4)(∀ x18 . x18intx8 x18 = x7 x18)(∀ x18 . x18int∀ x19 . x19intx9 x18 x19 = add_SNo x18 (minus_SNo x19))(∀ x18 . x18int∀ x19 . x19intx10 x18 x19 = add_SNo x18 x19)(∀ x18 . x18intx11 x18 = add_SNo x18 (minus_SNo 1))(∀ x18 . x18intx12 x18 = add_SNo 2 x18)(∀ x18 . x18intx13 x18 = x18)(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx14 x18 x19 x20 = If_i (SNoLe x18 0) x19 (x9 (x14 (add_SNo x18 (minus_SNo 1)) x19 x20) (x15 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx15 x18 x19 x20 = If_i (SNoLe x18 0) x20 (x10 (x14 (add_SNo x18 (minus_SNo 1)) x19 x20) (x15 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18intx16 x18 = x14 (x11 x18) (x12 x18) (x13 x18))(∀ x18 . x18intx17 x18 = If_i (SNoLe x18 0) 1 (x16 x18))∀ x18 . x18intSNoLe 0 x18x8 x18 = x17 x18
Conjecture 5d7e3..A140062 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 . x15int∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)(∀ x22 . x22intx0 x22 = add_SNo 1 (mul_SNo (add_SNo 2 x22) x22))x1 = 2x2 = 2(∀ x22 . x22int∀ x23 . x23intx3 x22 x23 = If_i (SNoLe x22 0) x23 (x0 (x3 (add_SNo x22 (minus_SNo 1)) x23)))x4 = x3 x1 x2(∀ x22 . x22intx5 x22 = add_SNo (add_SNo x4 x22) x22)(∀ x22 . x22intx6 x22 = x22)x7 = 1(∀ x22 . x22int∀ x23 . x23intx8 x22 x23 = If_i (SNoLe x22 0) x23 (x5 (x8 (add_SNo x22 (minus_SNo 1)) x23)))(∀ x22 . x22intx9 x22 = x8 (x6 x22) x7)(∀ x22 . x22intx10 x22 = x9 x22)(∀ x22 . x22intx11 x22 = mul_SNo x22 x22)x12 = 1x13 = add_SNo 2 (mul_SNo 2 (add_SNo 2 2))(∀ x22 . x22int∀ x23 . x23intx14 x22 x23 = If_i (SNoLe x22 0) x23 (x11 (x14 (add_SNo x22 (minus_SNo 1)) x23)))x15 = x14 x12 x13(∀ x22 . x22intx16 x22 = add_SNo x22 x22)(∀ x22 . x22intx17 x22 = x22)x18 = 1(∀ x22 . x22int∀ x23 . x23intx19 x22 x23 = If_i (SNoLe x22 0) x23 (x16 (x19 (add_SNo x22 (minus_SNo 1)) x23)))(∀ x22 . x22intx20 x22 = x19 (x17 x22) x18)(∀ x22 . x22intx21 x22 = add_SNo (mul_SNo (add_SNo 1 x15) (add_SNo (x20 x22) (minus_SNo 1))) 1)∀ x22 . x22intSNoLe 0 x22x10 x22 = x21 x22