Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrJGW..
/
985a5..
PUVPb..
/
33af1..
vout
PrJGW..
/
8efab..
1.94 bars
TMMAt..
/
213eb..
ownership of
c67bf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTQv..
/
98f81..
ownership of
e619f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdJG..
/
fe4a1..
ownership of
3968f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZu6..
/
5f788..
ownership of
412f5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbd6..
/
27a80..
ownership of
09839..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRNo..
/
6b058..
ownership of
7be4c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSZN..
/
dec6d..
ownership of
e358b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMai..
/
782c7..
ownership of
36581..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTQH..
/
72fb1..
ownership of
23b00..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZUp..
/
190f9..
ownership of
d7a25..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK62..
/
90106..
ownership of
907b4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG45..
/
91e9c..
ownership of
06821..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMErY..
/
6aee4..
ownership of
d5115..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXGY..
/
8a658..
ownership of
111b7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTSC..
/
07333..
ownership of
e9104..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK7E..
/
77dc2..
ownership of
d4b77..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXtE..
/
2e262..
ownership of
6a35f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHqH..
/
21823..
ownership of
6867e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQJ2..
/
e648a..
ownership of
53e2d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHtz..
/
c15fa..
ownership of
47d90..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPeX..
/
ccedd..
ownership of
bca09..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNLT..
/
b9e0d..
ownership of
e4825..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb2c..
/
b7627..
ownership of
097e4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSaL..
/
5925b..
ownership of
9133b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT8J..
/
1d2db..
ownership of
a3777..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdop..
/
e5c3b..
ownership of
dc174..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZzo..
/
cd030..
ownership of
158f3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTmx..
/
4458b..
ownership of
da75f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUz7..
/
a9969..
ownership of
3b6d2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVGa..
/
2c0c9..
ownership of
27f39..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSaV..
/
b82c3..
ownership of
fa8f9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVyJ..
/
aff43..
ownership of
bda11..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYoP..
/
001ac..
ownership of
57b3e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG5x..
/
141c2..
ownership of
1a4ee..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSUS..
/
a6f9b..
ownership of
02b64..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPrj..
/
3979c..
ownership of
ebbaf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJ6c..
/
5085c..
ownership of
26d68..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdW5..
/
9ade3..
ownership of
036ed..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGDF..
/
10574..
ownership of
e21c3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTsh..
/
2924e..
ownership of
9884f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUAS..
/
87fdc..
ownership of
9f585..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbzi..
/
00e39..
ownership of
fffb8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZFw..
/
05c97..
ownership of
73bae..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYV4..
/
3f4a9..
ownership of
06d1c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaLx..
/
efb33..
ownership of
9593a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdrM..
/
bf343..
ownership of
a9dae..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJVo..
/
76a83..
ownership of
10054..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGzp..
/
a35df..
ownership of
af50d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMP3D..
/
f486e..
ownership of
3153c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcEr..
/
500d7..
ownership of
acb02..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZz5..
/
7ee01..
ownership of
25763..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQdu..
/
9b8ff..
ownership of
122fd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUhr2..
/
d3066..
doc published by
PrGxv..
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Definition
ac767..
:=
λ x0 x1 .
0fc90..
x0
(
λ x2 .
x1
)
Known
690be..
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
Subq
(
x2
x4
)
(
x3
x4
)
)
⟶
Subq
(
0fc90..
x0
x2
)
(
0fc90..
x1
x3
)
Theorem
25763..
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 x3 .
Subq
x2
x3
⟶
Subq
(
ac767..
x0
x2
)
(
ac767..
x1
x3
)
(proof)
Known
d3673..
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 :
ι → ι
.
Subq
(
0fc90..
x0
x2
)
(
0fc90..
x1
x2
)
Theorem
3153c..
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 .
Subq
(
ac767..
x0
x2
)
(
ac767..
x1
x2
)
(proof)
Known
Subq_ref
:
∀ x0 .
Subq
x0
x0
Theorem
10054..
:
∀ x0 x1 x2 .
Subq
x1
x2
⟶
Subq
(
ac767..
x0
x1
)
(
ac767..
x0
x2
)
(proof)
Param
aae7a..
:
ι
→
ι
→
ι
Param
f482f..
:
ι
→
ι
→
ι
Param
4a7ef..
:
ι
Param
4ae4a..
:
ι
→
ι
Param
e76d4..
:
ι
→
ι
Known
76a87..
:
∀ x0 .
e76d4..
x0
=
f482f..
x0
4a7ef..
Param
22ca9..
:
ι
→
ι
Known
0ba89..
:
∀ x0 .
22ca9..
x0
=
f482f..
x0
(
4ae4a..
4a7ef..
)
Known
74782..
:
∀ x0 .
Subq
(
aae7a..
(
e76d4..
x0
)
(
22ca9..
x0
)
)
x0
Theorem
9593a..
:
∀ x0 .
Subq
(
aae7a..
(
f482f..
x0
4a7ef..
)
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
x0
(proof)
Known
cdaf8..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
aae7a..
(
e76d4..
x2
)
(
22ca9..
x2
)
=
x2
Theorem
73bae..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
aae7a..
(
f482f..
x2
4a7ef..
)
(
f482f..
x2
(
4ae4a..
4a7ef..
)
)
=
x2
(proof)
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Known
aff96..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
94f9e..
x0
x1
=
94f9e..
x0
x2
Known
33e74..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
prim1
(
f482f..
x2
4a7ef..
)
x0
Known
35b50..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
prim1
(
f482f..
x2
(
4ae4a..
4a7ef..
)
)
(
x1
(
f482f..
x2
4a7ef..
)
)
Theorem
9f585..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
94f9e..
(
ac767..
x0
x1
)
(
λ x5 .
x2
(
f482f..
x5
4a7ef..
)
(
f482f..
x5
(
4ae4a..
4a7ef..
)
)
)
=
94f9e..
(
ac767..
x0
x1
)
(
λ x5 .
x3
(
f482f..
x5
4a7ef..
)
(
f482f..
x5
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
6b93f..
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
∀ x5 : ο .
(
∀ x6 .
x2
=
aae7a..
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Param
If_i
:
ο
→
ι
→
ι
→
ι
Known
exandE_i
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 .
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
7d8a1..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
(
x1
x4
)
)
(
x2
=
aae7a..
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Theorem
e21c3..
:
∀ x0 x1 x2 .
6b93f..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(proof)
Theorem
26d68..
:
∀ x0 x1 x2 x3 .
6b93f..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(proof)
Param
e5b72..
:
ι
→
ι
Param
3097a..
:
ι
→
(
ι
→
ι
) →
ι
Known
3daee..
:
∀ x0 x1 .
Subq
x1
x0
⟶
prim1
x1
(
e5b72..
x0
)
Known
f1083..
:
prim1
4a7ef..
(
4ae4a..
4a7ef..
)
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
3c674..
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
4a7ef..
Definition
cad8f..
:=
λ x0 .
aae7a..
(
f482f..
x0
4a7ef..
)
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
=
x0
Known
85578..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
3097a..
x0
x1
)
⟶
and
(
∀ x3 .
prim1
x3
x2
⟶
and
(
cad8f..
x3
)
(
prim1
(
f482f..
x3
4a7ef..
)
x0
)
)
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
f482f..
x2
x3
)
(
x1
x3
)
)
Param
91630..
:
ι
→
ι
Known
dcd83..
:
∀ x0 .
nIn
x0
4a7ef..
Known
aa929..
:
∀ x0 x1 x2 .
prim1
(
aae7a..
x1
x2
)
x0
⟶
prim1
x2
(
f482f..
x0
x1
)
Known
fead7..
:
∀ x0 x1 .
prim1
x1
(
91630..
x0
)
⟶
x1
=
x0
Known
30652..
:
Subq
(
4ae4a..
4a7ef..
)
(
91630..
4a7ef..
)
Known
b21da..
:
∀ x0 x1 .
prim1
x1
(
e5b72..
x0
)
⟶
Subq
x1
x0
Theorem
02b64..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
e5b72..
(
4ae4a..
4a7ef..
)
)
)
⟶
prim1
(
3097a..
x0
x1
)
(
e5b72..
(
4ae4a..
4a7ef..
)
)
(proof)
Known
8d403..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
(
∀ x3 .
prim1
x3
x2
⟶
and
(
cad8f..
x3
)
(
prim1
(
f482f..
x3
4a7ef..
)
x0
)
)
⟶
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
f482f..
x2
x3
)
(
x1
x3
)
)
⟶
prim1
x2
(
3097a..
x0
x1
)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
34894..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
3097a..
x0
x1
)
⟶
0fc90..
x0
(
f482f..
x2
)
=
x2
Known
9e5b2..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
nIn
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
4a7ef..
Theorem
57b3e..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
Subq
x0
x1
⟶
(
∀ x3 .
prim1
x3
x1
⟶
nIn
x3
x0
⟶
prim1
4a7ef..
(
x2
x3
)
)
⟶
Subq
(
3097a..
x0
x2
)
(
3097a..
x1
x2
)
(proof)
Theorem
fa8f9..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
Subq
(
x1
x3
)
(
x2
x3
)
)
⟶
Subq
(
3097a..
x0
x1
)
(
3097a..
x0
x2
)
(proof)
Known
Subq_tra
:
∀ x0 x1 x2 .
Subq
x0
x1
⟶
Subq
x1
x2
⟶
Subq
x0
x2
Theorem
3b6d2..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
Subq
(
x2
x4
)
(
x3
x4
)
)
⟶
Subq
x0
x1
⟶
(
∀ x4 .
prim1
x4
x1
⟶
nIn
x4
x0
⟶
prim1
4a7ef..
(
x3
x4
)
)
⟶
Subq
(
3097a..
x0
x2
)
(
3097a..
x1
x3
)
(proof)
Definition
b5c9f..
:=
λ x0 x1 .
3097a..
x1
(
λ x2 .
x0
)
Known
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Known
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Known
016fc..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
and
(
and
(
aae7a..
(
e76d4..
x2
)
(
22ca9..
x2
)
=
x2
)
(
prim1
(
e76d4..
x2
)
x0
)
)
(
prim1
(
22ca9..
x2
)
(
x1
(
e76d4..
x2
)
)
)
Known
f71c6..
:
∀ x0 x1 .
aae7a..
x0
x1
=
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
Known
27474..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
(
x1
x3
)
)
⟶
prim1
(
0fc90..
x0
x2
)
(
3097a..
x0
x1
)
Known
If_i_or
:
∀ x0 : ο .
∀ x1 x2 .
or
(
If_i
x0
x1
x2
=
x1
)
(
If_i
x0
x1
x2
=
x2
)
Known
f5701..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
(
x1
x2
)
⟶
prim1
(
aae7a..
x2
x3
)
(
0fc90..
x0
x1
)
Known
f336d..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Known
0b783..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Known
dcd87..
:
∀ x0 .
(
∀ x1 .
prim1
x1
x0
⟶
and
(
cad8f..
x1
)
(
prim1
(
f482f..
x1
4a7ef..
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
⟶
cad8f..
x0
Theorem
158f3..
:
∀ x0 .
ac767..
x0
x0
=
b5c9f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
a3777..
:
∀ x0 .
prim1
4a7ef..
x0
⟶
∀ x1 x2 .
Subq
x1
x2
⟶
Subq
(
b5c9f..
x0
x1
)
(
b5c9f..
x0
x2
)
(proof)
Theorem
097e4..
:
∀ x0 x1 x2 x3 .
prim1
4a7ef..
x3
⟶
Subq
x2
x3
⟶
Subq
x0
x1
⟶
Subq
(
b5c9f..
x2
x0
)
(
b5c9f..
x3
x1
)
(proof)
Param
ba9d8..
:
ι
→
ο
Known
8f913..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
Subq
x1
x0
Theorem
bca09..
:
∀ x0 .
prim1
4a7ef..
x0
⟶
∀ x1 .
ba9d8..
x1
⟶
∀ x2 .
prim1
x2
x1
⟶
Subq
(
b5c9f..
x0
x2
)
(
b5c9f..
x0
x1
)
(proof)
Known
204eb..
:
aae7a..
=
λ x1 x2 .
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x1
x2
)
Known
4b3cb..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
prim1
(
aae7a..
4a7ef..
x2
)
(
aae7a..
x0
x1
)
Theorem
53e2d..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
4a7ef..
x2
)
)
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
(proof)
Known
2391b..
:
∀ x0 x1 x2 .
prim1
x2
x1
⟶
prim1
(
aae7a..
(
4ae4a..
4a7ef..
)
x2
)
(
aae7a..
x0
x1
)
Theorem
6a35f..
:
∀ x0 x1 x2 .
prim1
x2
x1
⟶
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
(
4ae4a..
4a7ef..
)
x2
)
)
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
(proof)
Known
2f64c..
:
∀ x0 x1 x2 .
prim1
x2
(
aae7a..
x0
x1
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
x2
=
aae7a..
4a7ef..
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x1
)
(
x2
=
aae7a..
(
4ae4a..
4a7ef..
)
x4
)
⟶
x3
)
⟶
x3
)
Theorem
e9104..
:
∀ x0 x1 x2 .
prim1
x2
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
x2
=
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
4a7ef..
x4
)
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x1
)
(
x2
=
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
(
4ae4a..
4a7ef..
)
x4
)
)
⟶
x3
)
⟶
x3
)
(proof)
Theorem
1cc2a..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
(
x1
x2
)
⟶
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x2
x3
)
)
(
0fc90..
x0
x1
)
(proof)
Theorem
d5115..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x1
⟶
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x2
x3
)
)
(
ac767..
x0
x1
)
(proof)
Theorem
907b4..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
(
f482f..
x2
4a7ef..
)
(
f482f..
x2
(
4ae4a..
4a7ef..
)
)
)
=
x2
(proof)
Theorem
23b00..
:
∀ x0 x1 x2 .
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x1
x2
)
)
x0
⟶
prim1
x2
(
f482f..
x0
x1
)
(proof)
Known
2a2bc..
:
∀ x0 x1 x2 .
prim1
x2
(
f482f..
x0
x1
)
⟶
prim1
(
aae7a..
x1
x2
)
x0
Theorem
e358b..
:
∀ x0 x1 x2 .
prim1
x2
(
f482f..
x0
x1
)
⟶
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x1
x2
)
)
x0
(proof)
Known
3f849..
:
∀ x0 .
Subq
x0
4a7ef..
⟶
x0
=
4a7ef..
Theorem
09839..
:
∀ x0 .
f482f..
4a7ef..
x0
=
4a7ef..
(proof)
Known
bcb22..
:
∀ x0 x1 .
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
)
=
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
Known
9f6cd..
:
∀ x0 .
prim1
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
∀ x1 :
ι → ο
.
x1
4a7ef..
⟶
x1
(
4ae4a..
4a7ef..
)
⟶
x1
x0
Known
6f2e8..
:
∀ x0 x1 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
4a7ef..
=
x0
Known
15d37..
:
∀ x0 x1 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
(
4ae4a..
4a7ef..
)
=
x1
Theorem
3968f..
:
∀ x0 x1 x2 .
prim1
x0
x2
⟶
prim1
x1
x2
⟶
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
(
b5c9f..
x2
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Param
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Known
aa4b6..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
bij
x0
x0
x1
Known
d7fe6..
:
ba9d8..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Theorem
c67bf..
:
∀ x0 x1 .
prim1
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
prim1
x1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
bij
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x2 .
If_i
(
x2
=
4a7ef..
)
x0
x1
)
)
)
(proof)