Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrK52..
/
5671d..
PUdTk..
/
c040a..
vout
PrK52..
/
9fb90..
0.10 bars
TMR81..
/
73d82..
ownership of
e398e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaXL..
/
8eb5d..
ownership of
7ef68..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLa9..
/
676c8..
ownership of
0453c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUDw..
/
68edb..
ownership of
8e9b3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSne..
/
4b66f..
ownership of
f693f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaAn..
/
21afc..
ownership of
cea19..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSs8..
/
1d95f..
ownership of
a9a7d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTGL..
/
04ce6..
ownership of
34561..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSfc..
/
1bc68..
ownership of
29894..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUQG..
/
64cba..
ownership of
d629c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRNc..
/
a4681..
ownership of
05710..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYba..
/
e5a89..
ownership of
58d65..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH64..
/
cd277..
ownership of
e3562..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUPS..
/
08c3e..
ownership of
42a90..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTex..
/
4c992..
ownership of
b0b6c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbUd..
/
a1581..
ownership of
7073d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdyx..
/
93914..
ownership of
9e9a6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKi6..
/
5c6e7..
ownership of
69325..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWBY..
/
469da..
ownership of
4e77e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGNp..
/
c8cff..
ownership of
557f2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TML6y..
/
b2892..
ownership of
a5f20..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXdP..
/
76fe4..
ownership of
e944b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPKM..
/
32e98..
ownership of
25d74..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNoA..
/
dae1f..
ownership of
e2f3b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM8o..
/
e22ff..
ownership of
0ebb0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVm4..
/
cd43f..
ownership of
bf8a0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFcW..
/
63e3e..
ownership of
9c129..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXUR..
/
ff66e..
ownership of
88530..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSe1..
/
67601..
ownership of
900aa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJxB..
/
7d0ba..
ownership of
d56df..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUjR..
/
e5942..
ownership of
ac5fe..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFLQ..
/
e7090..
ownership of
a7d53..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJ1y..
/
49f55..
ownership of
0c3df..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTQg..
/
0ad2b..
ownership of
8e44e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRnH..
/
496cc..
ownership of
99bd6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLdP..
/
55eb1..
ownership of
67a9c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUhHD..
/
4530a..
doc published by
PrCmT..
Known
ax_inf2__df_cnf__df_tc__df_r1__df_rank__df_card__df_aleph__df_cf__df_acn__df_ac__df_cda__df_fin1a__df_fin2__df_fin4__df_fin3__df_fin5__df_fin6__df_fin7
:
∀ x0 : ο .
(
wex
(
λ x1 .
wa
(
wex
(
λ x2 .
wa
(
wcel
(
cv
x2
)
(
cv
x1
)
)
(
∀ x3 .
wn
(
wcel
(
cv
x3
)
(
cv
x2
)
)
)
)
)
(
∀ x2 .
wcel
(
cv
x2
)
(
cv
x1
)
⟶
wex
(
λ x3 .
wa
(
wcel
(
cv
x3
)
(
cv
x1
)
)
(
∀ x4 .
wb
(
wcel
(
cv
x4
)
(
cv
x3
)
)
(
wo
(
wcel
(
cv
x4
)
(
cv
x2
)
)
(
wceq
(
cv
x4
)
(
cv
x2
)
)
)
)
)
)
)
⟶
wceq
ccnf
(
cmpt2
(
λ x1 x2 .
con0
)
(
λ x1 x2 .
con0
)
(
λ x1 x2 .
cmpt
(
λ x3 .
crab
(
λ x4 .
wbr
(
cv
x4
)
c0
cfsupp
)
(
λ x4 .
co
(
cv
x1
)
(
cv
x2
)
cmap
)
)
(
λ x3 .
csb
(
coi
(
co
(
cv
x3
)
c0
csupp
)
cep
)
(
λ x4 .
cfv
(
cdm
(
cv
x4
)
)
(
cseqom
(
cmpt2
(
λ x5 x6 .
cvv
)
(
λ x5 x6 .
cvv
)
(
λ x5 x6 .
co
(
co
(
co
(
cv
x1
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
coe
)
(
cfv
(
cfv
(
cv
x5
)
(
cv
x4
)
)
(
cv
x3
)
)
comu
)
(
cv
x6
)
coa
)
)
c0
)
)
)
)
)
⟶
wceq
ctc
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cint
(
cab
(
λ x2 .
wa
(
wss
(
cv
x1
)
(
cv
x2
)
)
(
wtr
(
cv
x2
)
)
)
)
)
)
⟶
wceq
cr1
(
crdg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cpw
(
cv
x1
)
)
)
c0
)
⟶
wceq
crnk
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cint
(
crab
(
λ x2 .
wcel
(
cv
x1
)
(
cfv
(
csuc
(
cv
x2
)
)
cr1
)
)
(
λ x2 .
con0
)
)
)
)
⟶
wceq
ccrd
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cint
(
crab
(
λ x2 .
wbr
(
cv
x2
)
(
cv
x1
)
cen
)
(
λ x2 .
con0
)
)
)
)
⟶
wceq
cale
(
crdg
char
com
)
⟶
wceq
ccf
(
cmpt
(
λ x1 .
con0
)
(
λ x1 .
cint
(
cab
(
λ x2 .
wex
(
λ x3 .
wa
(
wceq
(
cv
x2
)
(
cfv
(
cv
x3
)
ccrd
)
)
(
wa
(
wss
(
cv
x3
)
(
cv
x1
)
)
(
wral
(
λ x4 .
wrex
(
λ x5 .
wss
(
cv
x4
)
(
cv
x5
)
)
(
λ x5 .
cv
x3
)
)
(
λ x4 .
cv
x1
)
)
)
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
wacn
x1
)
(
cab
(
λ x2 .
wa
(
wcel
x1
cvv
)
(
wral
(
λ x3 .
wex
(
λ x4 .
wral
(
λ x5 .
wcel
(
cfv
(
cv
x5
)
(
cv
x4
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
)
(
λ x5 .
x1
)
)
)
(
λ x3 .
co
(
cdif
(
cpw
(
cv
x2
)
)
(
csn
c0
)
)
x1
cmap
)
)
)
)
)
⟶
wb
wac
(
∀ x1 .
wex
(
λ x2 .
wa
(
wss
(
cv
x2
)
(
cv
x1
)
)
(
wfn
(
cv
x2
)
(
cdm
(
cv
x1
)
)
)
)
)
⟶
wceq
ccda
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cun
(
cxp
(
cv
x1
)
(
csn
c0
)
)
(
cxp
(
cv
x2
)
(
csn
c1o
)
)
)
)
⟶
wceq
cfin1a
(
cab
(
λ x1 .
wral
(
λ x2 .
wo
(
wcel
(
cv
x2
)
cfn
)
(
wcel
(
cdif
(
cv
x1
)
(
cv
x2
)
)
cfn
)
)
(
λ x2 .
cpw
(
cv
x1
)
)
)
)
⟶
wceq
cfin2
(
cab
(
λ x1 .
wral
(
λ x2 .
wa
(
wne
(
cv
x2
)
c0
)
(
wor
(
cv
x2
)
crpss
)
⟶
wcel
(
cuni
(
cv
x2
)
)
(
cv
x2
)
)
(
λ x2 .
cpw
(
cpw
(
cv
x1
)
)
)
)
)
⟶
wceq
cfin4
(
cab
(
λ x1 .
wn
(
wex
(
λ x2 .
wa
(
wpss
(
cv
x2
)
(
cv
x1
)
)
(
wbr
(
cv
x2
)
(
cv
x1
)
cen
)
)
)
)
)
⟶
wceq
cfin3
(
cab
(
λ x1 .
wcel
(
cpw
(
cv
x1
)
)
cfin4
)
)
⟶
wceq
cfin5
(
cab
(
λ x1 .
wo
(
wceq
(
cv
x1
)
c0
)
(
wbr
(
cv
x1
)
(
co
(
cv
x1
)
(
cv
x1
)
ccda
)
csdm
)
)
)
⟶
wceq
cfin6
(
cab
(
λ x1 .
wo
(
wbr
(
cv
x1
)
c2o
csdm
)
(
wbr
(
cv
x1
)
(
cxp
(
cv
x1
)
(
cv
x1
)
)
csdm
)
)
)
⟶
wceq
cfin7
(
cab
(
λ x1 .
wn
(
wrex
(
λ x2 .
wbr
(
cv
x1
)
(
cv
x2
)
cen
)
(
λ x2 .
cdif
con0
com
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
ax_inf2
:
wex
(
λ x0 .
wa
(
wex
(
λ x1 .
wa
(
wcel
(
cv
x1
)
(
cv
x0
)
)
(
∀ x2 .
wn
(
wcel
(
cv
x2
)
(
cv
x1
)
)
)
)
)
(
∀ x1 .
wcel
(
cv
x1
)
(
cv
x0
)
⟶
wex
(
λ x2 .
wa
(
wcel
(
cv
x2
)
(
cv
x0
)
)
(
∀ x3 .
wb
(
wcel
(
cv
x3
)
(
cv
x2
)
)
(
wo
(
wcel
(
cv
x3
)
(
cv
x1
)
)
(
wceq
(
cv
x3
)
(
cv
x1
)
)
)
)
)
)
)
(proof)
Theorem
df_cnf
:
wceq
ccnf
(
cmpt2
(
λ x0 x1 .
con0
)
(
λ x0 x1 .
con0
)
(
λ x0 x1 .
cmpt
(
λ x2 .
crab
(
λ x3 .
wbr
(
cv
x3
)
c0
cfsupp
)
(
λ x3 .
co
(
cv
x0
)
(
cv
x1
)
cmap
)
)
(
λ x2 .
csb
(
coi
(
co
(
cv
x2
)
c0
csupp
)
cep
)
(
λ x3 .
cfv
(
cdm
(
cv
x3
)
)
(
cseqom
(
cmpt2
(
λ x4 x5 .
cvv
)
(
λ x4 x5 .
cvv
)
(
λ x4 x5 .
co
(
co
(
co
(
cv
x0
)
(
cfv
(
cv
x4
)
(
cv
x3
)
)
coe
)
(
cfv
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cv
x2
)
)
comu
)
(
cv
x5
)
coa
)
)
c0
)
)
)
)
)
(proof)
Theorem
df_tc
:
wceq
ctc
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cint
(
cab
(
λ x1 .
wa
(
wss
(
cv
x0
)
(
cv
x1
)
)
(
wtr
(
cv
x1
)
)
)
)
)
)
(proof)
Theorem
df_r1
:
wceq
cr1
(
crdg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cpw
(
cv
x0
)
)
)
c0
)
(proof)
Theorem
df_rank
:
wceq
crnk
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cint
(
crab
(
λ x1 .
wcel
(
cv
x0
)
(
cfv
(
csuc
(
cv
x1
)
)
cr1
)
)
(
λ x1 .
con0
)
)
)
)
(proof)
Theorem
df_card
:
wceq
ccrd
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cint
(
crab
(
λ x1 .
wbr
(
cv
x1
)
(
cv
x0
)
cen
)
(
λ x1 .
con0
)
)
)
)
(proof)
Theorem
df_aleph
:
wceq
cale
(
crdg
char
com
)
(proof)
Theorem
df_cf
:
wceq
ccf
(
cmpt
(
λ x0 .
con0
)
(
λ x0 .
cint
(
cab
(
λ x1 .
wex
(
λ x2 .
wa
(
wceq
(
cv
x1
)
(
cfv
(
cv
x2
)
ccrd
)
)
(
wa
(
wss
(
cv
x2
)
(
cv
x0
)
)
(
wral
(
λ x3 .
wrex
(
λ x4 .
wss
(
cv
x3
)
(
cv
x4
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x0
)
)
)
)
)
)
)
)
(proof)
Theorem
df_acn
:
∀ x0 :
ι → ο
.
wceq
(
wacn
x0
)
(
cab
(
λ x1 .
wa
(
wcel
x0
cvv
)
(
wral
(
λ x2 .
wex
(
λ x3 .
wral
(
λ x4 .
wcel
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
)
(
λ x4 .
x0
)
)
)
(
λ x2 .
co
(
cdif
(
cpw
(
cv
x1
)
)
(
csn
c0
)
)
x0
cmap
)
)
)
)
(proof)
Theorem
df_ac
:
wb
wac
(
∀ x0 .
wex
(
λ x1 .
wa
(
wss
(
cv
x1
)
(
cv
x0
)
)
(
wfn
(
cv
x1
)
(
cdm
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_cda
:
wceq
ccda
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cun
(
cxp
(
cv
x0
)
(
csn
c0
)
)
(
cxp
(
cv
x1
)
(
csn
c1o
)
)
)
)
(proof)
Theorem
df_fin1a
:
wceq
cfin1a
(
cab
(
λ x0 .
wral
(
λ x1 .
wo
(
wcel
(
cv
x1
)
cfn
)
(
wcel
(
cdif
(
cv
x0
)
(
cv
x1
)
)
cfn
)
)
(
λ x1 .
cpw
(
cv
x0
)
)
)
)
(proof)
Theorem
df_fin2
:
wceq
cfin2
(
cab
(
λ x0 .
wral
(
λ x1 .
wa
(
wne
(
cv
x1
)
c0
)
(
wor
(
cv
x1
)
crpss
)
⟶
wcel
(
cuni
(
cv
x1
)
)
(
cv
x1
)
)
(
λ x1 .
cpw
(
cpw
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_fin4
:
wceq
cfin4
(
cab
(
λ x0 .
wn
(
wex
(
λ x1 .
wa
(
wpss
(
cv
x1
)
(
cv
x0
)
)
(
wbr
(
cv
x1
)
(
cv
x0
)
cen
)
)
)
)
)
(proof)
Theorem
df_fin3
:
wceq
cfin3
(
cab
(
λ x0 .
wcel
(
cpw
(
cv
x0
)
)
cfin4
)
)
(proof)
Theorem
df_fin5
:
wceq
cfin5
(
cab
(
λ x0 .
wo
(
wceq
(
cv
x0
)
c0
)
(
wbr
(
cv
x0
)
(
co
(
cv
x0
)
(
cv
x0
)
ccda
)
csdm
)
)
)
(proof)
Theorem
df_fin6
:
wceq
cfin6
(
cab
(
λ x0 .
wo
(
wbr
(
cv
x0
)
c2o
csdm
)
(
wbr
(
cv
x0
)
(
cxp
(
cv
x0
)
(
cv
x0
)
)
csdm
)
)
)
(proof)
Theorem
df_fin7
:
wceq
cfin7
(
cab
(
λ x0 .
wn
(
wrex
(
λ x1 .
wbr
(
cv
x0
)
(
cv
x1
)
cen
)
(
λ x1 .
cdif
con0
com
)
)
)
)
(proof)