Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrNy7..
/
76852..
PUawT..
/
c946a..
vout
PrNy7..
/
22651..
0.10 bars
TMYih..
/
325ce..
ownership of
15b93..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQPE..
/
0860a..
ownership of
8b0c2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLHX..
/
d5a66..
ownership of
03a43..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ81..
/
187bb..
ownership of
1919b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGeG..
/
b1661..
ownership of
2b597..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMN5M..
/
d3a11..
ownership of
c41ab..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUcA..
/
e2eb2..
ownership of
85c94..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPsV..
/
6630c..
ownership of
27ca1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMV3F..
/
1554f..
ownership of
17219..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNcW..
/
1235d..
ownership of
11594..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFjJ..
/
0f253..
ownership of
50ce8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWB5..
/
069a4..
ownership of
cbb1b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHkq..
/
d85e5..
ownership of
4bb71..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQKC..
/
08c38..
ownership of
ddfce..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRhw..
/
95c29..
ownership of
6f37b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbBD..
/
a314b..
ownership of
389fc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQGp..
/
de2a7..
ownership of
b74a1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJsJ..
/
92149..
ownership of
ecab2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb8V..
/
71d15..
ownership of
28633..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPow..
/
7ce86..
ownership of
647a1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUBa..
/
93e06..
ownership of
dbeac..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMN2a..
/
159f4..
ownership of
99a28..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPLx..
/
bfdff..
ownership of
ff2b2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TML4x..
/
37a26..
ownership of
80632..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLmn..
/
fa126..
ownership of
06e58..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHCZ..
/
1d9d1..
ownership of
1f000..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQga..
/
299e6..
ownership of
ac0a6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTVq..
/
bc4c1..
ownership of
6b091..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPuD..
/
918f3..
ownership of
8b459..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUbT..
/
faef7..
ownership of
49def..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYZn..
/
0af0a..
ownership of
3ba11..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYwP..
/
d10ce..
ownership of
2ecf0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQ6a..
/
cfa20..
ownership of
59371..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLgy..
/
a86fa..
ownership of
dbfd2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHqk..
/
e07b3..
ownership of
a5c03..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbSJ..
/
1dc63..
ownership of
e5350..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUJoj..
/
f8d22..
doc published by
PrCmT..
Known
df_gim__df_gic__df_ga__df_cntz__df_cntr__df_oppg__df_symg__df_pmtr__df_psgn__df_evpm__df_od__df_gex__df_pgp__df_slw__df_lsm__df_pj1__df_efg__df_frgp
:
∀ x0 : ο .
(
wceq
cgim
(
cmpt2
(
λ x1 x2 .
cgrp
)
(
λ x1 x2 .
cgrp
)
(
λ x1 x2 .
crab
(
λ x3 .
wf1o
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x2
)
cbs
)
(
cv
x3
)
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
cghm
)
)
)
⟶
wceq
cgic
(
cima
(
ccnv
cgim
)
(
cdif
cvv
c1o
)
)
⟶
wceq
cga
(
cmpt2
(
λ x1 x2 .
cgrp
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x3 .
crab
(
λ x4 .
wral
(
λ x5 .
wa
(
wceq
(
co
(
cfv
(
cv
x1
)
c0g
)
(
cv
x5
)
(
cv
x4
)
)
(
cv
x5
)
)
(
wral
(
λ x6 .
wral
(
λ x7 .
wceq
(
co
(
co
(
cv
x6
)
(
cv
x7
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x5
)
(
cv
x4
)
)
(
co
(
cv
x6
)
(
co
(
cv
x7
)
(
cv
x5
)
(
cv
x4
)
)
(
cv
x4
)
)
)
(
λ x7 .
cv
x3
)
)
(
λ x6 .
cv
x3
)
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
co
(
cv
x2
)
(
cxp
(
cv
x3
)
(
cv
x2
)
)
cmap
)
)
)
)
⟶
wceq
ccntz
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
co
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cplusg
)
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
wceq
ccntr
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cfv
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
ccntz
)
)
)
⟶
wceq
coppg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cv
x1
)
(
cop
(
cfv
cnx
cplusg
)
(
ctpos
(
cfv
(
cv
x1
)
cplusg
)
)
)
csts
)
)
⟶
wceq
csymg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
cab
(
λ x2 .
wf1o
(
cv
x1
)
(
cv
x1
)
(
cv
x2
)
)
)
(
λ x2 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x2
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
ccom
(
cv
x3
)
(
cv
x4
)
)
)
)
(
cop
(
cfv
cnx
cts
)
(
cfv
(
cxp
(
cv
x1
)
(
csn
(
cpw
(
cv
x1
)
)
)
)
cpt
)
)
)
)
)
⟶
wceq
cpmtr
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
crab
(
λ x3 .
wbr
(
cv
x3
)
c2o
cen
)
(
λ x3 .
cpw
(
cv
x1
)
)
)
(
λ x2 .
cmpt
(
λ x3 .
cv
x1
)
(
λ x3 .
cif
(
wcel
(
cv
x3
)
(
cv
x2
)
)
(
cuni
(
cdif
(
cv
x2
)
(
csn
(
cv
x3
)
)
)
)
(
cv
x3
)
)
)
)
)
⟶
wceq
cpsgn
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
crab
(
λ x3 .
wcel
(
cdm
(
cdif
(
cv
x3
)
cid
)
)
cfn
)
(
λ x3 .
cfv
(
cfv
(
cv
x1
)
csymg
)
cbs
)
)
(
λ x2 .
cio
(
λ x3 .
wrex
(
λ x4 .
wa
(
wceq
(
cv
x2
)
(
co
(
cfv
(
cv
x1
)
csymg
)
(
cv
x4
)
cgsu
)
)
(
wceq
(
cv
x3
)
(
co
(
cneg
c1
)
(
cfv
(
cv
x4
)
chash
)
cexp
)
)
)
(
λ x4 .
cword
(
crn
(
cfv
(
cv
x1
)
cpmtr
)
)
)
)
)
)
)
⟶
wceq
cevpm
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cima
(
ccnv
(
cfv
(
cv
x1
)
cpsgn
)
)
(
csn
c1
)
)
)
⟶
wceq
cod
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
csb
(
crab
(
λ x3 .
wceq
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cmg
)
)
(
cfv
(
cv
x1
)
c0g
)
)
(
λ x3 .
cn
)
)
(
λ x3 .
cif
(
wceq
(
cv
x3
)
c0
)
cc0
(
cinf
(
cv
x3
)
cr
clt
)
)
)
)
)
⟶
wceq
cgex
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
crab
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cmg
)
)
(
cfv
(
cv
x1
)
c0g
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cn
)
)
(
λ x2 .
cif
(
wceq
(
cv
x2
)
c0
)
cc0
(
cinf
(
cv
x2
)
cr
clt
)
)
)
)
⟶
wceq
cpgp
(
copab
(
λ x1 x2 .
wa
(
wa
(
wcel
(
cv
x1
)
cprime
)
(
wcel
(
cv
x2
)
cgrp
)
)
(
wral
(
λ x3 .
wrex
(
λ x4 .
wceq
(
cfv
(
cv
x3
)
(
cfv
(
cv
x2
)
cod
)
)
(
co
(
cv
x1
)
(
cv
x4
)
cexp
)
)
(
λ x4 .
cn0
)
)
(
λ x3 .
cfv
(
cv
x2
)
cbs
)
)
)
)
⟶
wceq
cslw
(
cmpt2
(
λ x1 x2 .
cprime
)
(
λ x1 x2 .
cgrp
)
(
λ x1 x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wb
(
wa
(
wss
(
cv
x3
)
(
cv
x4
)
)
(
wbr
(
cv
x1
)
(
co
(
cv
x2
)
(
cv
x4
)
cress
)
cpgp
)
)
(
wceq
(
cv
x3
)
(
cv
x4
)
)
)
(
λ x4 .
cfv
(
cv
x2
)
csubg
)
)
(
λ x3 .
cfv
(
cv
x2
)
csubg
)
)
)
⟶
wceq
clsm
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 x3 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 x3 .
crn
(
cmpt2
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cplusg
)
)
)
)
)
)
⟶
wceq
cpj1
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 x3 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 x3 .
cmpt
(
λ x4 .
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
clsm
)
)
(
λ x4 .
crio
(
λ x5 .
wrex
(
λ x6 .
wceq
(
cv
x4
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x1
)
cplusg
)
)
)
(
λ x6 .
cv
x3
)
)
(
λ x5 .
cv
x2
)
)
)
)
)
⟶
wceq
cefg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cint
(
cab
(
λ x2 .
wa
(
wer
(
cword
(
cxp
(
cv
x1
)
c2o
)
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wbr
(
cv
x3
)
(
co
(
cv
x3
)
(
cotp
(
cv
x4
)
(
cv
x4
)
(
cs2
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cop
(
cv
x5
)
(
cdif
c1o
(
cv
x6
)
)
)
)
)
csplice
)
(
cv
x2
)
)
(
λ x6 .
c2o
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
co
cc0
(
cfv
(
cv
x3
)
chash
)
cfz
)
)
(
λ x3 .
cword
(
cxp
(
cv
x1
)
c2o
)
)
)
)
)
)
)
⟶
wceq
cfrgp
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cfv
(
cxp
(
cv
x1
)
c2o
)
cfrmd
)
(
cfv
(
cv
x1
)
cefg
)
cqus
)
)
⟶
x0
)
⟶
x0
Theorem
df_gim
:
wceq
cgim
(
cmpt2
(
λ x0 x1 .
cgrp
)
(
λ x0 x1 .
cgrp
)
(
λ x0 x1 .
crab
(
λ x2 .
wf1o
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
(
cv
x2
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
cghm
)
)
)
(proof)
Theorem
df_gic
:
wceq
cgic
(
cima
(
ccnv
cgim
)
(
cdif
cvv
c1o
)
)
(proof)
Theorem
df_ga
:
wceq
cga
(
cmpt2
(
λ x0 x1 .
cgrp
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
cfv
(
cv
x0
)
cbs
)
(
λ x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wa
(
wceq
(
co
(
cfv
(
cv
x0
)
c0g
)
(
cv
x4
)
(
cv
x3
)
)
(
cv
x4
)
)
(
wral
(
λ x5 .
wral
(
λ x6 .
wceq
(
co
(
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x4
)
(
cv
x3
)
)
(
co
(
cv
x5
)
(
co
(
cv
x6
)
(
cv
x4
)
(
cv
x3
)
)
(
cv
x3
)
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
co
(
cv
x1
)
(
cxp
(
cv
x2
)
(
cv
x1
)
)
cmap
)
)
)
)
(proof)
Theorem
df_cntz
:
wceq
ccntz
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cplusg
)
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)
Theorem
df_cntr
:
wceq
ccntr
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cfv
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
ccntz
)
)
)
(proof)
Theorem
df_oppg
:
wceq
coppg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cv
x0
)
(
cop
(
cfv
cnx
cplusg
)
(
ctpos
(
cfv
(
cv
x0
)
cplusg
)
)
)
csts
)
)
(proof)
Theorem
df_symg
:
wceq
csymg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
cab
(
λ x1 .
wf1o
(
cv
x0
)
(
cv
x0
)
(
cv
x1
)
)
)
(
λ x1 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
ccom
(
cv
x2
)
(
cv
x3
)
)
)
)
(
cop
(
cfv
cnx
cts
)
(
cfv
(
cxp
(
cv
x0
)
(
csn
(
cpw
(
cv
x0
)
)
)
)
cpt
)
)
)
)
)
(proof)
Theorem
df_pmtr
:
wceq
cpmtr
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
crab
(
λ x2 .
wbr
(
cv
x2
)
c2o
cen
)
(
λ x2 .
cpw
(
cv
x0
)
)
)
(
λ x1 .
cmpt
(
λ x2 .
cv
x0
)
(
λ x2 .
cif
(
wcel
(
cv
x2
)
(
cv
x1
)
)
(
cuni
(
cdif
(
cv
x1
)
(
csn
(
cv
x2
)
)
)
)
(
cv
x2
)
)
)
)
)
(proof)
Theorem
df_psgn
:
wceq
cpsgn
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
crab
(
λ x2 .
wcel
(
cdm
(
cdif
(
cv
x2
)
cid
)
)
cfn
)
(
λ x2 .
cfv
(
cfv
(
cv
x0
)
csymg
)
cbs
)
)
(
λ x1 .
cio
(
λ x2 .
wrex
(
λ x3 .
wa
(
wceq
(
cv
x1
)
(
co
(
cfv
(
cv
x0
)
csymg
)
(
cv
x3
)
cgsu
)
)
(
wceq
(
cv
x2
)
(
co
(
cneg
c1
)
(
cfv
(
cv
x3
)
chash
)
cexp
)
)
)
(
λ x3 .
cword
(
crn
(
cfv
(
cv
x0
)
cpmtr
)
)
)
)
)
)
)
(proof)
Theorem
df_evpm
:
wceq
cevpm
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cima
(
ccnv
(
cfv
(
cv
x0
)
cpsgn
)
)
(
csn
c1
)
)
)
(proof)
Theorem
df_od
:
wceq
cod
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
csb
(
crab
(
λ x2 .
wceq
(
co
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cmg
)
)
(
cfv
(
cv
x0
)
c0g
)
)
(
λ x2 .
cn
)
)
(
λ x2 .
cif
(
wceq
(
cv
x2
)
c0
)
cc0
(
cinf
(
cv
x2
)
cr
clt
)
)
)
)
)
(proof)
Theorem
df_gex
:
wceq
cgex
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
crab
(
λ x1 .
wral
(
λ x2 .
wceq
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cmg
)
)
(
cfv
(
cv
x0
)
c0g
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cn
)
)
(
λ x1 .
cif
(
wceq
(
cv
x1
)
c0
)
cc0
(
cinf
(
cv
x1
)
cr
clt
)
)
)
)
(proof)
Theorem
df_pgp
:
wceq
cpgp
(
copab
(
λ x0 x1 .
wa
(
wa
(
wcel
(
cv
x0
)
cprime
)
(
wcel
(
cv
x1
)
cgrp
)
)
(
wral
(
λ x2 .
wrex
(
λ x3 .
wceq
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cod
)
)
(
co
(
cv
x0
)
(
cv
x3
)
cexp
)
)
(
λ x3 .
cn0
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
)
)
(proof)
Theorem
df_slw
:
wceq
cslw
(
cmpt2
(
λ x0 x1 .
cprime
)
(
λ x0 x1 .
cgrp
)
(
λ x0 x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wb
(
wa
(
wss
(
cv
x2
)
(
cv
x3
)
)
(
wbr
(
cv
x0
)
(
co
(
cv
x1
)
(
cv
x3
)
cress
)
cpgp
)
)
(
wceq
(
cv
x2
)
(
cv
x3
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
csubg
)
)
(
λ x2 .
cfv
(
cv
x1
)
csubg
)
)
)
(proof)
Theorem
df_lsm
:
wceq
clsm
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 x2 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 x2 .
crn
(
cmpt2
(
λ x3 x4 .
cv
x1
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cplusg
)
)
)
)
)
)
(proof)
Theorem
df_pj1
:
wceq
cpj1
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 x2 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 x2 .
cmpt
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
clsm
)
)
(
λ x3 .
crio
(
λ x4 .
wrex
(
λ x5 .
wceq
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x0
)
cplusg
)
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x1
)
)
)
)
)
(proof)
Theorem
df_efg
:
wceq
cefg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cint
(
cab
(
λ x1 .
wa
(
wer
(
cword
(
cxp
(
cv
x0
)
c2o
)
)
(
cv
x1
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wbr
(
cv
x2
)
(
co
(
cv
x2
)
(
cotp
(
cv
x3
)
(
cv
x3
)
(
cs2
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x4
)
(
cdif
c1o
(
cv
x5
)
)
)
)
)
csplice
)
(
cv
x1
)
)
(
λ x5 .
c2o
)
)
(
λ x4 .
cv
x0
)
)
(
λ x3 .
co
cc0
(
cfv
(
cv
x2
)
chash
)
cfz
)
)
(
λ x2 .
cword
(
cxp
(
cv
x0
)
c2o
)
)
)
)
)
)
)
(proof)
Theorem
df_frgp
:
wceq
cfrgp
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cfv
(
cxp
(
cv
x0
)
c2o
)
cfrmd
)
(
cfv
(
cv
x0
)
cefg
)
cqus
)
)
(proof)