Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr4te../ae176..
PUTFy../2d61e..
vout
Pr4te../cd7b7.. 0.22 bars
TMXYG../6021e.. negprop ownership controlledby PrEBh.. upto 0
TMamU../0ca0e.. negprop ownership controlledby PrEBh.. upto 0
TMdRQ../1d746.. negprop ownership controlledby PrEBh.. upto 0
TMZgB../f01df.. negprop ownership controlledby PrEBh.. upto 0
TMaBi../6d8ed.. negprop ownership controlledby PrEBh.. upto 0
TMaUw../24109.. negprop ownership controlledby PrEBh.. upto 0
TMLgB../0b74e.. ownership of 25a44.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMdPG../f9e90.. ownership of 257a0.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMctK../40d89.. ownership of f5478.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPi4../6dc0f.. ownership of 4b817.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMKuV../a63d3.. ownership of 1db04.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMdcN../3503c.. ownership of e71ab.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMc6p../eff82.. ownership of b6adc.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZnv../f6ce3.. ownership of 2e999.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMM9i../11e7f.. ownership of 96a7f.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMMoF../e1967.. ownership of 50d20.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMH1D../4f837.. ownership of 24059.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMNeg../a4a24.. ownership of c6008.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZod../4b664.. ownership of 2f285.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMas9../766f7.. ownership of 4f3dc.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMGn8../3acd7.. ownership of feecd.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZVT../65e6c.. ownership of eb4df.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
PUJqS../6d6e8.. doc published by PrEBh..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition surjsurj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)
Param SepSep : ι(ιο) → ι
Definition nInnIn := λ x0 x1 . not (x0x1)
Known Sep_In_PowerSep_In_Power : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1prim4 x0
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Theorem feecd..form100_63_surjCantor : ∀ x0 . ∀ x1 : ι → ι . not (surj x0 (prim4 x0) x1) (proof)
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Param ReplSepReplSep : ι(ιο) → (ιι) → ι
Known ReplSepIReplSepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3x0x1 x3x2 x3ReplSep x0 x1 x2
Known ReplSepE_impredReplSepE_impred : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3ReplSep x0 x1 x2∀ x4 : ο . (∀ x5 . x5x0x1 x5x3 = x2 x5x4)x4
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known PowerIPowerI : ∀ x0 x1 . x1x0x1prim4 x0
Theorem form100_63_Cantorform100_63_injCantor : ∀ x0 . ∀ x1 : ι → ι . not (inj (prim4 x0) x0 x1) (proof)
Definition MetaCat_terminal_pterminal_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x6 x4 (x5 x6)) (∀ x7 . x1 x6 x4 x7x7 = x5 x6))
Param IrreflexiveSymmetricRelnstruct_r_graph : ιο
Param BinRelnHomHom_struct_r : ιιιο
Param struct_idstruct_id : ιι
Param struct_compstruct_comp : ιιιιιι
Param pack_rpack_r : ι(ιιο) → ι
Known 96ca7.. : ∀ x0 . IrreflexiveSymmetricReln x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . (∀ x4 . x4x2not (x3 x4 x4))(∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x3 x5 x4)x1 (pack_r x2 x3))x1 x0
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Param apap : ιιι
Known c84ab..Hom_struct_r_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ο . ∀ x4 . BinRelnHom (pack_r x0 x2) (pack_r x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0∀ x7 . x7x0x2 x6 x7x3 (ap x4 x6) (ap x4 x7))
Known FalseEFalseE : False∀ x0 : ο . x0
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known 36176.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0not (x1 x2 x2))(∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)IrreflexiveSymmetricReln (pack_r x0 x1)
Theorem 24059.. : not (∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0) (proof)
Param MetaCat_monic_pmonic : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ιιιο
Param MetaCat_pullback_ppullback_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ιιιιιιιι(ιιιι) → ο
Definition MetaCat_subobject_classifier_psubobject_classifier_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . λ x6 x7 . λ x8 : ι → ι → ι → ι . λ x9 : ι → ι → ι → ι → ι → ι → ι . and (and (and (MetaCat_terminal_p x0 x1 x2 x3 x4 x5) (x0 x6)) (x1 x4 x6 x7)) (∀ x10 x11 x12 . MetaCat_monic_p x0 x1 x2 x3 x10 x11 x12and (x1 x11 x6 (x8 x10 x11 x12)) (MetaCat_pullback_p x0 x1 x2 x3 x4 x11 x6 x7 (x8 x10 x11 x12) x10 (x5 x10) x12 (x9 x10 x11 x12)))
Theorem 96a7f.. : not (∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0) (proof)
Definition MetaCat_nno_pnno_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . λ x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (MetaCat_terminal_p x0 x1 x2 x3 x4 x5) (x0 x6)) (x1 x4 x6 x7)) (x1 x6 x6 x8)) (∀ x10 x11 x12 . x0 x10x1 x4 x10 x11x1 x10 x10 x12and (and (and (x1 x6 x10 (x9 x10 x11 x12)) (x3 x4 x6 x10 (x9 x10 x11 x12) x7 = x11)) (x3 x6 x6 x10 (x9 x10 x11 x12) x8 = x3 x6 x10 x10 x12 (x9 x10 x11 x12))) (∀ x13 . x1 x6 x10 x13x3 x4 x6 x10 x13 x7 = x11x3 x6 x6 x10 x13 x8 = x3 x6 x10 x10 x12 x13x13 = x9 x10 x11 x12))
Theorem b6adc.. : not (∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0) (proof)
Param IrreflexiveTransitiveRelnstruct_r_partialord : ιο
Known af4aa.. : ∀ x0 . IrreflexiveTransitiveReln x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . (∀ x4 . x4x2not (x3 x4 x4))(∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2x3 x4 x5x3 x5 x6x3 x4 x6)x1 (pack_r x2 x3))x1 x0
Param ZermeloWOZermeloWO : ιιο
Definition ZermeloWOstrictZermeloWOstrict := λ x0 x1 . and (ZermeloWO x0 x1) (x0 = x1∀ x2 : ο . x2)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition trichotomous_ortrichotomous_or := λ x0 : ι → ι → ο . ∀ x1 x2 . or (or (x0 x1 x2) (x1 = x2)) (x0 x2 x1)
Known ZermeloWOstrict_trichZermeloWOstrict_trich : trichotomous_or ZermeloWOstrict
Known b25e7.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0not (x1 x2 x2))(∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x1 x2 x3x1 x3 x4x1 x2 x4)IrreflexiveTransitiveReln (pack_r x0 x1)
Definition transitivetransitive := λ x0 : ι → ι → ο . ∀ x1 x2 x3 . x0 x1 x2x0 x2 x3x0 x1 x3
Known ZermeloWO_traZermeloWO_tra : transitive ZermeloWO
Definition antisymmetricantisymmetric := λ x0 : ι → ι → ο . ∀ x1 x2 . x0 x1 x2x0 x2 x1x1 = x2
Known ZermeloWO_antisymZermeloWO_antisym : antisymmetric ZermeloWO
Theorem 1db04.. : not (∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0) (proof)
Theorem f5478.. : not (∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0) (proof)
Theorem 25a44.. : not (∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0) (proof)