vout |
---|
PrCit../0259c.. 2.97 barsTMckj../e735f.. ownership of dd444.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMYFo../83562.. ownership of df9e2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0PUegY../04c61.. doc published by Pr4zB..Param 4402e.. : ι → (ι → ι → ο) → οParam cf2df.. : ι → (ι → ι → ο) → οDefinition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Param setminussetminus : ι → ι → ιParam SingSing : ι → ιDefinition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x4 ⟶ ∀ x6 : ο . x6) ⟶ not (x0 x1 x2) ⟶ not (x0 x1 x3) ⟶ not (x0 x2 x3) ⟶ not (x0 x1 x4) ⟶ not (x0 x2 x4) ⟶ not (x0 x3 x4) ⟶ x5) ⟶ x5Definition c5756.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ not (x0 x2 x5) ⟶ x0 x3 x5 ⟶ x0 x4 x5 ⟶ x6) ⟶ x6Definition f8709.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ x0 x3 x6 ⟶ x0 x4 x6 ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 185eb.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ x0 x3 x7 ⟶ x0 x4 x7 ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition fd83c.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (185eb.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition b4c31.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (fd83c.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 16c0f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ not (x0 x3 x7) ⟶ x0 x4 x7 ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition 5c2af.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (16c0f.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ x0 x3 x8 ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 496a0.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (5c2af.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 0d539.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (496a0.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ x0 x1 x10 ⟶ x0 x2 x10 ⟶ not (x0 x3 x10) ⟶ not (x0 x4 x10) ⟶ x0 x5 x10 ⟶ not (x0 x6 x10) ⟶ not (x0 x7 x10) ⟶ x0 x8 x10 ⟶ not (x0 x9 x10) ⟶ x11) ⟶ x11Definition 00e1f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (16c0f.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition ed012.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (00e1f.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition d8b5d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (ed012.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ x0 x1 x10 ⟶ x0 x2 x10 ⟶ not (x0 x3 x10) ⟶ not (x0 x4 x10) ⟶ x0 x5 x10 ⟶ not (x0 x6 x10) ⟶ not (x0 x7 x10) ⟶ x0 x8 x10 ⟶ not (x0 x9 x10) ⟶ x11) ⟶ x11Definition 1465e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (b4c31.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ x0 x1 x10 ⟶ x0 x2 x10 ⟶ not (x0 x3 x10) ⟶ not (x0 x4 x10) ⟶ x0 x5 x10 ⟶ not (x0 x6 x10) ⟶ not (x0 x7 x10) ⟶ x0 x8 x10 ⟶ not (x0 x9 x10) ⟶ x11) ⟶ x11Definition 2de86.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ not (x0 x3 x6) ⟶ x0 x4 x6 ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 36d58.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ x0 x3 x7 ⟶ x0 x4 x7 ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition d2827.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (36d58.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ x0 x3 x8 ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 14be0.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (d2827.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 0446d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (14be0.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ x0 x1 x10 ⟶ x0 x2 x10 ⟶ not (x0 x3 x10) ⟶ not (x0 x4 x10) ⟶ x0 x5 x10 ⟶ not (x0 x6 x10) ⟶ not (x0 x7 x10) ⟶ x0 x8 x10 ⟶ not (x0 x9 x10) ⟶ x11) ⟶ x11Definition e8ae3.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ x0 x3 x7 ⟶ x0 x4 x7 ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition fa72d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (e8ae3.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition d92ce.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (fa72d.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 07f55.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (d92ce.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ x0 x1 x10 ⟶ x0 x2 x10 ⟶ not (x0 x3 x10) ⟶ not (x0 x4 x10) ⟶ x0 x5 x10 ⟶ not (x0 x6 x10) ⟶ not (x0 x7 x10) ⟶ x0 x8 x10 ⟶ not (x0 x9 x10) ⟶ x11) ⟶ x11Definition af16d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (36d58.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 654b9.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (af16d.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 3656c.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (654b9.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ x0 x1 x10 ⟶ not (x0 x2 x10) ⟶ not (x0 x3 x10) ⟶ not (x0 x4 x10) ⟶ x0 x5 x10 ⟶ x0 x6 x10 ⟶ not (x0 x7 x10) ⟶ x0 x8 x10 ⟶ not (x0 x9 x10) ⟶ x11) ⟶ x11Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known setminusEsetminusE : ∀ x0 x1 x2 . x2 ∈ setminus x0 x1 ⟶ and (x2 ∈ x0) (nIn x2 x1)Known d2455.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ b4c31.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ x13Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1 ⟶ ∀ x2 : ο . x2) ⟶ x1 = x0 ⟶ ∀ x2 : ο . x2Known 20299.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ b4c31.. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ⟶ b4c31.. x1 x2 x9 x6 x7 x4 x5 x10 x3 x8Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0 ⊆ x1 ⟶ x1 ⊆ x2 ⟶ x0 ⊆ x2Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1 ⊆ x0Known SingISingI : ∀ x0 . x0 ∈ Sing x0Theorem dd444.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ b4c31.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . (∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ 0d539.. x2 x14 x15 x16 x17 x18 x19 x3 x20 x21 x22 ⟶ x13) ⟶ (∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ d8b5d.. x2 x14 x15 x16 x17 x18 x19 x3 x20 x21 x22 ⟶ x13) ⟶ (∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ 1465e.. x2 x14 x15 x16 x17 x18 x19 x20 x21 x22 x3 ⟶ x13) ⟶ (∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ 0446d.. x2 x14 x15 x16 x17 x18 x3 x19 x20 x21 x22 ⟶ x13) ⟶ (∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ 07f55.. x2 x14 x15 x16 x17 x18 x3 x19 x20 x21 x22 ⟶ x13) ⟶ (∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ 3656c.. x2 x14 x3 x15 x16 x17 x18 x19 x20 x21 x22 ⟶ x13) ⟶ x13 (proof) |
|