| vout |
|---|
PrFwu../b8da3.. 24.98 barsTMLPF../560c4.. ownership of 917b0.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMVW7../9ac7a.. ownership of d7a7d.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMPXe../4d548.. ownership of 95c1f.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMSYL../abced.. ownership of 45c14.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMYJn../aed4b.. ownership of 84671.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMT5k../3055b.. ownership of 7ae2d.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMNUa../4e885.. ownership of b0a9c.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMQUM../5a7be.. ownership of 06df5.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMHUn../cc2c9.. ownership of d678f.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMbeB../75693.. ownership of 6686b.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMGVP../3a142.. ownership of 9d6b5.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMYzV../c8a98.. ownership of b27aa.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMLEc../042f8.. ownership of 0c442.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMWxu../31151.. ownership of 6464b.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMMK4../3da7c.. ownership of e2299.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMcBb../cc2b6.. ownership of 90b43.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMd7X../e6d17.. ownership of 32906.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMTpB../b7397.. ownership of d0f7d.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMQqk../4826f.. ownership of bd69a.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMNMm../5d4f2.. ownership of 4a7bc.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMKr7../a9492.. ownership of 314fb.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMFjM../fce78.. ownership of 02e69.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMM6f../9339c.. ownership of 16f3d.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMLpv../d9d68.. ownership of 8f1e8.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMJEj../27eed.. ownership of 37ba9.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMHDU../13a15.. ownership of 8d944.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMFrY../6d0b3.. ownership of 5145e.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMdtZ../6044c.. ownership of e2dfd.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMG5c../b16fc.. ownership of e0399.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMG1j../9949e.. ownership of 1d57f.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMSo6../4bf01.. ownership of 0d569.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMapi../5bdfd.. ownership of 61bd4.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMdLm../8d170.. ownership of 787e8.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMPvw../87836.. ownership of ba609.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMS1x../a65ff.. ownership of b6037.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMEhJ../fbf7a.. ownership of 0a497.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMV7T../bb80c.. ownership of db457.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMa5h../161dd.. ownership of 94869.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMH4C../f0765.. ownership of 8c844.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMbUS../04eb3.. ownership of ee159.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMdF6../40c80.. ownership of d54be.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0TMXt3../49c10.. ownership of 32cc3.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0PUgg7../8a178.. doc published by PrGM6..Definition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition 2f869.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x4 ⟶ ∀ x6 : ο . x6) ⟶ not (x0 x1 x2) ⟶ not (x0 x1 x3) ⟶ not (x0 x2 x3) ⟶ not (x0 x1 x4) ⟶ not (x0 x2 x4) ⟶ x0 x3 x4 ⟶ x5) ⟶ x5Definition 5a3b5.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ x0 x2 x5 ⟶ not (x0 x3 x5) ⟶ not (x0 x4 x5) ⟶ x6) ⟶ x6Definition 00e19.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (5a3b5.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ x0 x1 x6 ⟶ not (x0 x2 x6) ⟶ not (x0 x3 x6) ⟶ not (x0 x4 x6) ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 87c36.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ x0 x2 x5 ⟶ not (x0 x3 x5) ⟶ x0 x4 x5 ⟶ x6) ⟶ x6Definition 6648a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (87c36.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ x0 x3 x6 ⟶ not (x0 x4 x6) ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Param atleastpatleastp : ι → ι → οDefinition cdfa5.. := λ x0 x1 . λ x2 : ι → ι → ο . ∀ x3 . x3 ⊆ x1 ⟶ atleastp x0 x3 ⟶ not (∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ (x4 = x5 ⟶ ∀ x6 : ο . x6) ⟶ x2 x4 x5)Param u4 : ιDefinition 86706.. := cdfa5.. u4Definition 35fb6.. := λ x0 . λ x1 : ι → ι → ο . 86706.. x0 (λ x2 x3 . not (x1 x2 x3))Param SetAdjoinSetAdjoin : ι → ι → ιParam UPairUPair : ι → ι → ιDefinition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Known xmxm : ∀ x0 : ο . or x0 (not x0)Known dnegdneg : ∀ x0 : ο . not (not x0) ⟶ x0Param equipequip : ι → ι → οKnown equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1 ⟶ atleastp x0 x1Known 7204a.. : ∀ x0 x1 x2 x3 . (x0 = x1 ⟶ ∀ x4 : ο . x4) ⟶ (x0 = x2 ⟶ ∀ x4 : ο . x4) ⟶ (x1 = x2 ⟶ ∀ x4 : ο . x4) ⟶ (x0 = x3 ⟶ ∀ x4 : ο . x4) ⟶ (x1 = x3 ⟶ ∀ x4 : ο . x4) ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ equip u4 (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3)Known 58c12.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 x3 x4 . x0 x1 x2 ⟶ x0 x1 x3 ⟶ x0 x1 x4 ⟶ x0 x2 x3 ⟶ x0 x2 x4 ⟶ x0 x3 x4 ⟶ (∀ x5 . x5 ∈ SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4 ⟶ ∀ x6 . x6 ∈ SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4 ⟶ x0 x5 x6 ⟶ x0 x6 x5) ⟶ ∀ x5 . x5 ∈ SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4 ⟶ ∀ x6 . x6 ∈ SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4 ⟶ (x5 = x6 ⟶ ∀ x7 : ο . x7) ⟶ x0 x5 x6Known c88f0.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4 ⊆ x0Theorem d54be.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ ∀ x12 . x12 ∈ x1 ⟶ ∀ x13 . x13 ∈ x1 ⟶ (∀ x14 . x14 ∈ x1 ⟶ ∀ x15 . x15 ∈ x1 ⟶ x0 x14 x15 ⟶ x0 x15 x14) ⟶ (x2 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x13 ⟶ ∀ x14 : ο . x14) ⟶ 00e19.. x0 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x13 ⟶ 86706.. x1 x0 ⟶ 35fb6.. x1 x0 ⟶ (not (x0 x2 x12) ⟶ not (x0 x2 x13) ⟶ not (x0 x2 x11) ⟶ not (x0 x2 x10) ⟶ x0 x3 x11 ⟶ not (x0 x3 x10) ⟶ False) ⟶ (not (x0 x2 x12) ⟶ not (x0 x2 x10) ⟶ not (x0 x2 x9) ⟶ not (x0 x2 x11) ⟶ not (x0 x2 x13) ⟶ x0 x3 x10 ⟶ not (x0 x3 x9) ⟶ False) ⟶ (not (x0 x2 x10) ⟶ not (x0 x2 x11) ⟶ x0 x2 x13 ⟶ not (x0 x2 x12) ⟶ False) ⟶ (x0 x6 x8 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x5 x8 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x4 x8 ⟶ not (x0 x3 x8) ⟶ False) ⟶ (x0 x2 x12 ⟶ not (x0 x2 x9) ⟶ False) ⟶ (x0 x2 x11 ⟶ not (x0 x2 x9) ⟶ False) ⟶ (x0 x2 x10 ⟶ not (x0 x2 x9) ⟶ False) ⟶ False...
Known a1242.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 6648a.. x1 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. x1 x2 x4 x3 x6 x5 x7Known de43b.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 6648a.. x1 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. x1 x2 x3 x5 x4 x7 x6Theorem 8c844.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 6648a.. x1 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. x1 x2 x5 x3 x7 x4 x6...
Theorem db457.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 6648a.. x1 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. x1 x2 x7 x5 x6 x3 x4...
Theorem b6037.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 6648a.. x1 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. x1 x2 x4 x6 x3 x7 x5...
Theorem 787e8.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 6648a.. x1 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. x1 x2 x6 x7 x4 x5 x3...
Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Theorem 0d569.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ ∀ x12 . x12 ∈ x1 ⟶ ∀ x13 . x13 ∈ x1 ⟶ (∀ x14 . x14 ∈ x1 ⟶ ∀ x15 . x15 ∈ x1 ⟶ x0 x14 x15 ⟶ x0 x15 x14) ⟶ (x2 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x13 ⟶ ∀ x14 : ο . x14) ⟶ 00e19.. x0 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x13 ⟶ 86706.. x1 x0 ⟶ 35fb6.. x1 x0 ⟶ (not (x0 x2 x10) ⟶ not (x0 x2 x12) ⟶ not (x0 x2 x13) ⟶ not (x0 x2 x9) ⟶ x0 x3 x13 ⟶ not (x0 x3 x9) ⟶ False) ⟶ (x0 x2 x9 ⟶ not (x0 x2 x11) ⟶ False) ⟶ (x0 x2 x13 ⟶ not (x0 x2 x11) ⟶ False) ⟶ (not (x0 x2 x9) ⟶ not (x0 x2 x13) ⟶ x0 x2 x12 ⟶ not (x0 x2 x10) ⟶ False) ⟶ (x0 x2 x10 ⟶ not (x0 x2 x11) ⟶ False) ⟶ (x0 x6 x8 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x5 x8 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x4 x8 ⟶ not (x0 x3 x8) ⟶ False) ⟶ False...
Known d4057.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 6648a.. x1 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. x1 x2 x7 x6 x5 x4 x3Theorem e0399.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ ∀ x12 . x12 ∈ x1 ⟶ ∀ x13 . x13 ∈ x1 ⟶ (∀ x14 . x14 ∈ x1 ⟶ ∀ x15 . x15 ∈ x1 ⟶ x0 x14 x15 ⟶ x0 x15 x14) ⟶ (x2 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x13 ⟶ ∀ x14 : ο . x14) ⟶ 00e19.. x0 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x13 ⟶ 86706.. x1 x0 ⟶ 35fb6.. x1 x0 ⟶ (x0 x2 x13 ⟶ not (x0 x2 x11) ⟶ False) ⟶ (x0 x2 x9 ⟶ not (x0 x2 x11) ⟶ False) ⟶ (x0 x2 x12 ⟶ not (x0 x2 x11) ⟶ False) ⟶ (not (x0 x2 x13) ⟶ not (x0 x2 x9) ⟶ x0 x2 x10 ⟶ not (x0 x2 x12) ⟶ False) ⟶ (x0 x6 x8 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x5 x8 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x4 x8 ⟶ not (x0 x3 x8) ⟶ False) ⟶ False...
Theorem 5145e.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ ∀ x12 . x12 ∈ x1 ⟶ ∀ x13 . x13 ∈ x1 ⟶ (∀ x14 . x14 ∈ x1 ⟶ ∀ x15 . x15 ∈ x1 ⟶ x0 x14 x15 ⟶ x0 x15 x14) ⟶ (x2 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x13 ⟶ ∀ x14 : ο . x14) ⟶ 00e19.. x0 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x13 ⟶ 86706.. x1 x0 ⟶ 35fb6.. x1 x0 ⟶ (x0 x2 x10 ⟶ not (x0 x2 x9) ⟶ False) ⟶ (x0 x2 x13 ⟶ not (x0 x2 x9) ⟶ False) ⟶ (not (x0 x2 x11) ⟶ not (x0 x2 x10) ⟶ x0 x2 x12 ⟶ not (x0 x2 x13) ⟶ False) ⟶ (x0 x6 x8 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x5 x8 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x4 x8 ⟶ not (x0 x3 x8) ⟶ False) ⟶ False...
Theorem 37ba9.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ ∀ x12 . x12 ∈ x1 ⟶ ∀ x13 . x13 ∈ x1 ⟶ (∀ x14 . x14 ∈ x1 ⟶ ∀ x15 . x15 ∈ x1 ⟶ x0 x14 x15 ⟶ x0 x15 x14) ⟶ (x2 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x13 ⟶ ∀ x14 : ο . x14) ⟶ 00e19.. x0 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x13 ⟶ 86706.. x1 x0 ⟶ 35fb6.. x1 x0 ⟶ (x0 x2 x13 ⟶ not (x0 x2 x12) ⟶ False) ⟶ (x0 x6 x8 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x5 x8 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x4 x8 ⟶ not (x0 x3 x8) ⟶ False) ⟶ False...
Theorem 16f3d.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ ∀ x12 . x12 ∈ x1 ⟶ ∀ x13 . x13 ∈ x1 ⟶ (∀ x14 . x14 ∈ x1 ⟶ ∀ x15 . x15 ∈ x1 ⟶ x0 x14 x15 ⟶ x0 x15 x14) ⟶ (x2 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x13 ⟶ ∀ x14 : ο . x14) ⟶ 00e19.. x0 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x13 ⟶ 86706.. x1 x0 ⟶ 35fb6.. x1 x0 ⟶ (x0 x6 x8 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x5 x8 ⟶ not (x0 x2 x8) ⟶ False) ⟶ (x0 x4 x8 ⟶ not (x0 x3 x8) ⟶ False) ⟶ False...
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1 ⟶ ∀ x2 : ο . x2) ⟶ x1 = x0 ⟶ ∀ x2 : ο . x2Theorem 314fb.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ 5a3b5.. x1 x2 x3 x4 x5 x6 ⟶ 5a3b5.. x1 x2 x4 x6 x3 x5...
Theorem bd69a.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 00e19.. x1 x2 x3 x4 x5 x6 x7 ⟶ 00e19.. x1 x2 x4 x6 x3 x5 x7...
Known bfe59.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ 5a3b5.. x1 x2 x3 x4 x5 x6 ⟶ 5a3b5.. x1 x2 x6 x4 x5 x3Theorem 32906.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 00e19.. x1 x2 x3 x4 x5 x6 x7 ⟶ 00e19.. x1 x2 x6 x4 x5 x3 x7...
Known 66a94.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ 5a3b5.. x1 x2 x3 x4 x5 x6 ⟶ 5a3b5.. x1 x2 x3 x5 x4 x6Theorem e2299.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 00e19.. x1 x2 x3 x4 x5 x6 x7 ⟶ 00e19.. x1 x2 x3 x5 x4 x6 x7...
Theorem 0c442.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 00e19.. x1 x2 x3 x4 x5 x6 x7 ⟶ 00e19.. x1 x3 x4 x2 x7 x5 x6...
Theorem 9d6b5.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 00e19.. x1 x2 x3 x4 x5 x6 x7 ⟶ 00e19.. x1 x4 x2 x3 x6 x7 x5...
Theorem d678f.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 00e19.. x1 x2 x3 x4 x5 x6 x7 ⟶ 00e19.. x1 x4 x6 x7 x2 x3 x5...
Theorem b0a9c.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι → ι → ι → ι → ι → ο . (∀ x2 x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ ∀ x7 . x7 ∈ x2 ⟶ ∀ x8 . x8 ∈ x2 ⟶ ∀ x9 . x9 ∈ x2 ⟶ ∀ x10 . x10 ∈ x2 ⟶ ∀ x11 . x11 ∈ x2 ⟶ ∀ x12 . x12 ∈ x2 ⟶ ∀ x13 . x13 ∈ x2 ⟶ ∀ x14 . x14 ∈ x2 ⟶ (∀ x15 . x15 ∈ x2 ⟶ ∀ x16 . x16 ∈ x2 ⟶ x0 x15 x16 ⟶ x0 x16 x15) ⟶ (x3 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x14 ⟶ ∀ x15 : ο . x15) ⟶ 00e19.. x0 x3 x4 x5 x6 x7 x8 ⟶ x1 x9 x10 x11 x12 x13 x14 ⟶ 86706.. x2 x0 ⟶ 35fb6.. x2 x0 ⟶ (x0 x7 x9 ⟶ not (x0 x3 x9) ⟶ False) ⟶ (x0 x6 x9 ⟶ not (x0 x3 x9) ⟶ False) ⟶ (x0 x5 x9 ⟶ not (x0 x4 x9) ⟶ False) ⟶ False) ⟶ ∀ x2 x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ ∀ x7 . x7 ∈ x2 ⟶ ∀ x8 . x8 ∈ x2 ⟶ ∀ x9 . x9 ∈ x2 ⟶ ∀ x10 . x10 ∈ x2 ⟶ ∀ x11 . x11 ∈ x2 ⟶ ∀ x12 . x12 ∈ x2 ⟶ ∀ x13 . x13 ∈ x2 ⟶ ∀ x14 . x14 ∈ x2 ⟶ (∀ x15 . x15 ∈ x2 ⟶ ∀ x16 . x16 ∈ x2 ⟶ x0 x15 x16 ⟶ x0 x16 x15) ⟶ (x3 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x14 ⟶ ∀ x15 : ο . x15) ⟶ 00e19.. x0 x3 x4 x5 x6 x7 x8 ⟶ x1 x9 x10 x11 x12 x13 x14 ⟶ 86706.. x2 x0 ⟶ 35fb6.. x2 x0 ⟶ (x0 x6 x9 ⟶ not (x0 x4 x9) ⟶ False) ⟶ (x0 x8 x9 ⟶ not (x0 x4 x9) ⟶ False) ⟶ False...
Theorem 84671.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι → ι → ι → ι → ι → ο . (∀ x2 x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ ∀ x7 . x7 ∈ x2 ⟶ ∀ x8 . x8 ∈ x2 ⟶ ∀ x9 . x9 ∈ x2 ⟶ ∀ x10 . x10 ∈ x2 ⟶ ∀ x11 . x11 ∈ x2 ⟶ ∀ x12 . x12 ∈ x2 ⟶ ∀ x13 . x13 ∈ x2 ⟶ ∀ x14 . x14 ∈ x2 ⟶ (∀ x15 . x15 ∈ x2 ⟶ ∀ x16 . x16 ∈ x2 ⟶ x0 x15 x16 ⟶ x0 x16 x15) ⟶ (x3 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x14 ⟶ ∀ x15 : ο . x15) ⟶ 00e19.. x0 x3 x4 x5 x6 x7 x8 ⟶ x1 x9 x10 x11 x12 x13 x14 ⟶ 86706.. x2 x0 ⟶ 35fb6.. x2 x0 ⟶ (x0 x7 x9 ⟶ not (x0 x3 x9) ⟶ False) ⟶ (x0 x6 x9 ⟶ not (x0 x3 x9) ⟶ False) ⟶ (x0 x5 x9 ⟶ not (x0 x4 x9) ⟶ False) ⟶ False) ⟶ ∀ x2 x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ ∀ x7 . x7 ∈ x2 ⟶ ∀ x8 . x8 ∈ x2 ⟶ ∀ x9 . x9 ∈ x2 ⟶ ∀ x10 . x10 ∈ x2 ⟶ ∀ x11 . x11 ∈ x2 ⟶ ∀ x12 . x12 ∈ x2 ⟶ ∀ x13 . x13 ∈ x2 ⟶ ∀ x14 . x14 ∈ x2 ⟶ (∀ x15 . x15 ∈ x2 ⟶ ∀ x16 . x16 ∈ x2 ⟶ x0 x15 x16 ⟶ x0 x16 x15) ⟶ (x3 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x14 ⟶ ∀ x15 : ο . x15) ⟶ 00e19.. x0 x3 x4 x5 x6 x7 x8 ⟶ x1 x9 x10 x11 x12 x13 x14 ⟶ 86706.. x2 x0 ⟶ 35fb6.. x2 x0 ⟶ (x0 x8 x9 ⟶ not (x0 x5 x9) ⟶ False) ⟶ False...
Theorem 95c1f.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι → ι → ι → ι → ι → ο . (∀ x2 x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ ∀ x7 . x7 ∈ x2 ⟶ ∀ x8 . x8 ∈ x2 ⟶ ∀ x9 . x9 ∈ x2 ⟶ ∀ x10 . x10 ∈ x2 ⟶ ∀ x11 . x11 ∈ x2 ⟶ ∀ x12 . x12 ∈ x2 ⟶ ∀ x13 . x13 ∈ x2 ⟶ ∀ x14 . x14 ∈ x2 ⟶ (∀ x15 . x15 ∈ x2 ⟶ ∀ x16 . x16 ∈ x2 ⟶ x0 x15 x16 ⟶ x0 x16 x15) ⟶ (x3 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x14 ⟶ ∀ x15 : ο . x15) ⟶ 00e19.. x0 x3 x4 x5 x6 x7 x8 ⟶ x1 x9 x10 x11 x12 x13 x14 ⟶ 86706.. x2 x0 ⟶ 35fb6.. x2 x0 ⟶ (x0 x7 x9 ⟶ not (x0 x3 x9) ⟶ False) ⟶ (x0 x6 x9 ⟶ not (x0 x3 x9) ⟶ False) ⟶ (x0 x5 x9 ⟶ not (x0 x4 x9) ⟶ False) ⟶ False) ⟶ ∀ x2 x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ ∀ x7 . x7 ∈ x2 ⟶ ∀ x8 . x8 ∈ x2 ⟶ ∀ x9 . x9 ∈ x2 ⟶ ∀ x10 . x10 ∈ x2 ⟶ ∀ x11 . x11 ∈ x2 ⟶ ∀ x12 . x12 ∈ x2 ⟶ ∀ x13 . x13 ∈ x2 ⟶ ∀ x14 . x14 ∈ x2 ⟶ (∀ x15 . x15 ∈ x2 ⟶ ∀ x16 . x16 ∈ x2 ⟶ x0 x15 x16 ⟶ x0 x16 x15) ⟶ (x3 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x14 ⟶ ∀ x15 : ο . x15) ⟶ 00e19.. x0 x3 x4 x5 x6 x7 x8 ⟶ x1 x9 x10 x11 x12 x13 x14 ⟶ 86706.. x2 x0 ⟶ 35fb6.. x2 x0 ⟶ False...
Theorem 917b0.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ ∀ x12 . x12 ∈ x1 ⟶ ∀ x13 . x13 ∈ x1 ⟶ (∀ x14 . x14 ∈ x1 ⟶ ∀ x15 . x15 ∈ x1 ⟶ x0 x14 x15 ⟶ x0 x15 x14) ⟶ (x2 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x13 ⟶ ∀ x14 : ο . x14) ⟶ 00e19.. x0 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x13 ⟶ 86706.. x1 x0 ⟶ 35fb6.. x1 x0 ⟶ False...
|
|