Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr7wB..
/
beff1..
PUhX4..
/
3afce..
vout
Pr7wB..
/
02da0..
0.10 bars
TMJ2y..
/
c68d1..
ownership of
dc456..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJBf..
/
46fc9..
ownership of
0b729..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdRr..
/
da139..
ownership of
a3f00..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXqx..
/
a4866..
ownership of
6fdb2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMM2m..
/
ab7ed..
ownership of
9096d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMd1F..
/
4c2f3..
ownership of
06495..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW2S..
/
6c61d..
ownership of
4b837..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJ3P..
/
9c4f9..
ownership of
e8e8b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PULPi..
/
6e2a3..
doc published by
PrGxv..
Param
real
real
:
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Param
SNo
SNo
:
ι
→
ο
Param
SNoLev
SNoLev
:
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
omega
omega
:
ι
Param
SNoS_
SNoS_
:
ι
→
ι
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Param
abs_SNo
abs_SNo
:
ι
→
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
eps_
eps_
:
ι
→
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
real_E
real_E
:
∀ x0 .
x0
∈
real
⟶
∀ x1 : ο .
(
SNo
x0
⟶
SNoLev
x0
∈
ordsucc
omega
⟶
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
(
minus_SNo
omega
)
x0
⟶
SNoLt
x0
omega
⟶
(
∀ x2 .
x2
∈
SNoS_
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
x0
)
)
)
(
eps_
x3
)
)
⟶
x2
=
x0
)
⟶
(
∀ x2 .
x2
∈
omega
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoS_
omega
)
(
and
(
SNoLt
x4
x0
)
(
SNoLt
x0
(
add_SNo
x4
(
eps_
x2
)
)
)
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Known
real_I
real_I
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
(
x0
=
omega
⟶
∀ x1 : ο .
x1
)
⟶
(
x0
=
minus_SNo
omega
⟶
∀ x1 : ο .
x1
)
⟶
(
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
)
⟶
x0
∈
real
Param
ordinal
ordinal
:
ι
→
ο
Known
minus_SNo_SNoS_
minus_SNo_SNoS_
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
minus_SNo
x1
∈
SNoS_
x0
Known
ordsucc_omega_ordinal
ordsucc_omega_ordinal
:
ordinal
(
ordsucc
omega
)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
SNo_omega
SNo_omega
:
SNo
omega
Known
minus_SNo_prereal_1
minus_SNo_prereal_1
:
∀ x0 .
SNo
x0
⟶
(
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
)
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
(
minus_SNo
x0
)
)
)
)
(
eps_
x2
)
)
⟶
x1
=
minus_SNo
x0
Theorem
real_minus_SNo
real_minus_SNo
:
∀ x0 .
x0
∈
real
⟶
minus_SNo
x0
∈
real
(proof)
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
SNo_
SNo_
:
ι
→
ι
→
ο
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Known
SNoS_ordsucc_omega_bdd_above
SNoS_ordsucc_omega_bdd_above
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
x0
omega
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
SNoLt
x0
x2
)
⟶
x1
)
⟶
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
SNo_eps_
SNo_eps_
:
∀ x0 .
x0
∈
omega
⟶
SNo
(
eps_
x0
)
Known
SNo_1
SNo_1
:
SNo
1
Known
pos_mul_SNo_Lt
pos_mul_SNo_Lt
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLt
0
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
SNo_eps_pos
SNo_eps_pos
:
∀ x0 .
x0
∈
omega
⟶
SNoLt
0
(
eps_
x0
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Known
SNoLtLe_or
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Param
exp_SNo_nat
exp_SNo_nat
:
ι
→
ι
→
ι
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Param
nat_p
nat_p
:
ι
→
ο
Known
mul_SNo_eps_power_2'
mul_SNo_eps_power_2
:
∀ x0 .
nat_p
x0
⟶
mul_SNo
(
exp_SNo_nat
2
x0
)
(
eps_
x0
)
=
1
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
exp_SNo_2_bd
exp_SNo_2_bd
:
∀ x0 .
nat_p
x0
⟶
SNoLt
x0
(
exp_SNo_nat
2
x0
)
Known
mul_SNo_oneR
mul_SNo_oneR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
1
=
x0
Known
nonneg_mul_SNo_Le
nonneg_mul_SNo_Le
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLe
0
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Known
exp_SNo_nat_pos
exp_SNo_nat_pos
:
∀ x0 .
SNo
x0
⟶
SNoLt
0
x0
⟶
∀ x1 .
nat_p
x1
⟶
SNoLt
0
(
exp_SNo_nat
x0
x1
)
Known
SNo_2
SNo_2
:
SNo
2
Known
SNoLt_0_2
SNoLt_0_2
:
SNoLt
0
2
Known
SNo_exp_SNo_nat
SNo_exp_SNo_nat
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
nat_p
x1
⟶
SNo
(
exp_SNo_nat
x0
x1
)
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Theorem
SNoS_ordsucc_omega_bdd_eps_pos
SNoS_ordsucc_omega_bdd_eps_pos
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
0
x0
⟶
SNoLt
x0
omega
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
SNoLt
(
mul_SNo
(
eps_
x2
)
x0
)
1
)
⟶
x1
)
⟶
x1
(proof)
Known
SNoLt_trichotomy_or_impred
SNoLt_trichotomy_or_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
SNoLt
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
SNo_0
SNo_0
:
SNo
0
Known
pos_abs_SNo
pos_abs_SNo
:
∀ x0 .
SNoLt
0
x0
⟶
abs_SNo
x0
=
x0
Known
mul_SNo_pos_pos
mul_SNo_pos_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
SNoLt
0
(
mul_SNo
x0
x1
)
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_0
nat_0
:
nat_p
0
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Known
abs_SNo_0
abs_SNo_0
:
abs_SNo
0
=
0
Known
SNoLt_0_1
SNoLt_0_1
:
SNoLt
0
1
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
neg_abs_SNo
neg_abs_SNo
:
∀ x0 .
SNo
x0
⟶
SNoLt
x0
0
⟶
abs_SNo
x0
=
minus_SNo
x0
Known
mul_SNo_pos_neg
mul_SNo_pos_neg
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
0
x0
⟶
SNoLt
x1
0
⟶
SNoLt
(
mul_SNo
x0
x1
)
0
Known
minus_SNo_Lt_contra1
minus_SNo_Lt_contra1
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
(
minus_SNo
x0
)
x1
⟶
SNoLt
(
minus_SNo
x1
)
x0
Known
minus_SNo_Lt_contra2
minus_SNo_Lt_contra2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
(
minus_SNo
x1
)
⟶
SNoLt
x1
(
minus_SNo
x0
)
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Theorem
a3f00..
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
(
minus_SNo
omega
)
x0
⟶
SNoLt
x0
omega
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
SNoLt
(
abs_SNo
(
mul_SNo
(
eps_
x2
)
x0
)
)
1
)
⟶
x1
)
⟶
x1
(proof)
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Known
mul_nat_mul_SNo
mul_nat_mul_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_nat
x0
x1
=
mul_SNo
x0
x1
Known
mul_nat_p
mul_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_nat
x0
x1
)
Known
SNoLe_tra
SNoLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLe
x0
x2
Known
ordinal_SNoLev_max_2
ordinal_SNoLev_max_2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
ordsucc
x0
⟶
SNoLe
x1
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
SNoLev_0
SNoLev_0
:
SNoLev
0
=
0
Known
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Known
nat_exp_SNo_nat
nat_exp_SNo_nat
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
exp_SNo_nat
x0
x1
)
Known
nat_2
nat_2
:
nat_p
2
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
omega_SNoS_omega
omega_SNoS_omega
:
omega
⊆
SNoS_
omega
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
abs_SNo_minus
abs_SNo_minus
:
∀ x0 .
SNo
x0
⟶
abs_SNo
(
minus_SNo
x0
)
=
abs_SNo
x0
Theorem
real_Archimedean
real_Archimedean
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
SNoLt
0
x0
⟶
SNoLe
0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
SNoLe
x1
(
mul_SNo
x3
x0
)
)
⟶
x2
)
⟶
x2
(proof)