Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrKAy..
/
c73fd..
PUeHn..
/
7925c..
vout
PrKAy..
/
459ef..
0.10 bars
TMVRD..
/
3b749..
ownership of
72e93..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFoq..
/
68cdd..
ownership of
c34ae..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGfk..
/
c8880..
ownership of
b393a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGW2..
/
abc40..
ownership of
af9d5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXD1..
/
1f9e1..
ownership of
bce24..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHPd..
/
81b74..
ownership of
1a7e5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUS6..
/
6fac4..
ownership of
05d15..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQUz..
/
7b956..
ownership of
83cc7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRXJ..
/
ddd3f..
ownership of
d3d24..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNfR..
/
f5800..
ownership of
74c98..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSJw..
/
d4b84..
ownership of
2bb1e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMday..
/
19ecc..
ownership of
5f68e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTNP..
/
be9ea..
ownership of
5babe..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRMa..
/
5728c..
ownership of
f8fc8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbkB..
/
d58fa..
ownership of
3287d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdZb..
/
be12e..
ownership of
a197c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTy5..
/
74e79..
ownership of
ff707..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXaT..
/
55e41..
ownership of
ae37e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR8P..
/
59dd3..
ownership of
faba8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJKs..
/
2760f..
ownership of
822fb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMS59..
/
7bc16..
ownership of
0d946..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbn9..
/
f55ca..
ownership of
149a8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKMx..
/
4c240..
ownership of
d5cc3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMoH..
/
44b2e..
ownership of
92b33..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK5u..
/
c07b6..
ownership of
99911..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ3Z..
/
f5049..
ownership of
2fca7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMsY..
/
49aac..
ownership of
6d369..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFz8..
/
f681a..
ownership of
edcba..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMtX..
/
f69d9..
ownership of
8ee0a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbws..
/
d6d05..
ownership of
b10b0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYcF..
/
d811f..
ownership of
b677a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFzK..
/
fd426..
ownership of
23c75..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXoV..
/
e66e6..
ownership of
4d20a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMT3F..
/
998a9..
ownership of
193c2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYUB..
/
835a6..
ownership of
bbc8e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRaV..
/
fd958..
ownership of
6c88c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUWDt..
/
83255..
doc published by
PrCmT..
Known
df_sca__df_vsca__df_ip__df_tset__df_ple__df_ocomp__df_ds__df_unif__df_hom__df_cco__df_rest__df_topn__df_0g__df_gsum__df_topgen__df_pt__df_prds__df_pws
:
∀ x0 : ο .
(
wceq
csca
(
cslot
c5
)
⟶
wceq
cvsca
(
cslot
c6
)
⟶
wceq
cip
(
cslot
c8
)
⟶
wceq
cts
(
cslot
c9
)
⟶
wceq
cple
(
cslot
(
cdc
c1
cc0
)
)
⟶
wceq
coc
(
cslot
(
cdc
c1
c1
)
)
⟶
wceq
cds
(
cslot
(
cdc
c1
c2
)
)
⟶
wceq
cunif
(
cslot
(
cdc
c1
c3
)
)
⟶
wceq
chom
(
cslot
(
cdc
c1
c4
)
)
⟶
wceq
cco
(
cslot
(
cdc
c1
c5
)
)
⟶
wceq
crest
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
crn
(
cmpt
(
λ x3 .
cv
x1
)
(
λ x3 .
cin
(
cv
x3
)
(
cv
x2
)
)
)
)
)
⟶
wceq
ctopn
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cfv
(
cv
x1
)
cts
)
(
cfv
(
cv
x1
)
cbs
)
crest
)
)
⟶
wceq
c0g
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cio
(
λ x2 .
wa
(
wcel
(
cv
x2
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wral
(
λ x3 .
wa
(
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x3
)
)
(
wceq
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x3
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
)
)
)
⟶
wceq
cgsu
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
crab
(
λ x3 .
wral
(
λ x4 .
wa
(
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x4
)
)
(
wceq
(
co
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x4
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
cif
(
wss
(
crn
(
cv
x2
)
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
c0g
)
(
cif
(
wcel
(
cdm
(
cv
x2
)
)
(
crn
cfz
)
)
(
cio
(
λ x4 .
wex
(
λ x5 .
wrex
(
λ x6 .
wa
(
wceq
(
cdm
(
cv
x2
)
)
(
co
(
cv
x5
)
(
cv
x6
)
cfz
)
)
(
wceq
(
cv
x4
)
(
cfv
(
cv
x6
)
(
cseq
(
cfv
(
cv
x1
)
cplusg
)
(
cv
x2
)
(
cv
x5
)
)
)
)
)
(
λ x6 .
cfv
(
cv
x5
)
cuz
)
)
)
)
(
cio
(
λ x4 .
wex
(
λ x5 .
wsbc
(
λ x6 .
wa
(
wf1o
(
co
c1
(
cfv
(
cv
x6
)
chash
)
cfz
)
(
cv
x6
)
(
cv
x5
)
)
(
wceq
(
cv
x4
)
(
cfv
(
cfv
(
cv
x6
)
chash
)
(
cseq
(
cfv
(
cv
x1
)
cplusg
)
(
ccom
(
cv
x2
)
(
cv
x5
)
)
c1
)
)
)
)
(
cima
(
ccnv
(
cv
x2
)
)
(
cdif
cvv
(
cv
x3
)
)
)
)
)
)
)
)
)
)
⟶
wceq
ctg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cab
(
λ x2 .
wss
(
cv
x2
)
(
cuni
(
cin
(
cv
x1
)
(
cpw
(
cv
x2
)
)
)
)
)
)
)
⟶
wceq
cpt
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cfv
(
cab
(
λ x2 .
wex
(
λ x3 .
wa
(
w3a
(
wfn
(
cv
x3
)
(
cdm
(
cv
x1
)
)
)
(
wral
(
λ x4 .
wcel
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x4
)
(
cv
x1
)
)
)
(
λ x4 .
cdm
(
cv
x1
)
)
)
(
wrex
(
λ x4 .
wral
(
λ x5 .
wceq
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cuni
(
cfv
(
cv
x5
)
(
cv
x1
)
)
)
)
(
λ x5 .
cdif
(
cdm
(
cv
x1
)
)
(
cv
x4
)
)
)
(
λ x4 .
cfn
)
)
)
(
wceq
(
cv
x2
)
(
cixp
(
λ x4 .
cdm
(
cv
x1
)
)
(
λ x4 .
cfv
(
cv
x4
)
(
cv
x3
)
)
)
)
)
)
)
ctg
)
)
⟶
wceq
cprds
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
cixp
(
λ x3 .
cdm
(
cv
x2
)
)
(
λ x3 .
cfv
(
cfv
(
cv
x3
)
(
cv
x2
)
)
cbs
)
)
(
λ x3 .
csb
(
cmpt2
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cixp
(
λ x6 .
cdm
(
cv
x2
)
)
(
λ x6 .
co
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
(
cfv
(
cfv
(
cv
x6
)
(
cv
x2
)
)
chom
)
)
)
)
(
λ x4 .
cun
(
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x3
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x5 x6 .
cv
x3
)
(
λ x5 x6 .
cv
x3
)
(
λ x5 x6 .
cmpt
(
λ x7 .
cdm
(
cv
x2
)
)
(
λ x7 .
co
(
cfv
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x7
)
(
cv
x6
)
)
(
cfv
(
cfv
(
cv
x7
)
(
cv
x2
)
)
cplusg
)
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x5 x6 .
cv
x3
)
(
λ x5 x6 .
cv
x3
)
(
λ x5 x6 .
cmpt
(
λ x7 .
cdm
(
cv
x2
)
)
(
λ x7 .
co
(
cfv
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x7
)
(
cv
x6
)
)
(
cfv
(
cfv
(
cv
x7
)
(
cv
x2
)
)
cmulr
)
)
)
)
)
)
(
ctp
(
cop
(
cfv
cnx
csca
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x5 x6 .
cfv
(
cv
x1
)
cbs
)
(
λ x5 x6 .
cv
x3
)
(
λ x5 x6 .
cmpt
(
λ x7 .
cdm
(
cv
x2
)
)
(
λ x7 .
co
(
cv
x5
)
(
cfv
(
cv
x7
)
(
cv
x6
)
)
(
cfv
(
cfv
(
cv
x7
)
(
cv
x2
)
)
cvsca
)
)
)
)
)
(
cop
(
cfv
cnx
cip
)
(
cmpt2
(
λ x5 x6 .
cv
x3
)
(
λ x5 x6 .
cv
x3
)
(
λ x5 x6 .
co
(
cv
x1
)
(
cmpt
(
λ x7 .
cdm
(
cv
x2
)
)
(
λ x7 .
co
(
cfv
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x7
)
(
cv
x6
)
)
(
cfv
(
cfv
(
cv
x7
)
(
cv
x2
)
)
cip
)
)
)
cgsu
)
)
)
)
)
(
cun
(
ctp
(
cop
(
cfv
cnx
cts
)
(
cfv
(
ccom
ctopn
(
cv
x2
)
)
cpt
)
)
(
cop
(
cfv
cnx
cple
)
(
copab
(
λ x5 x6 .
wa
(
wss
(
cpr
(
cv
x5
)
(
cv
x6
)
)
(
cv
x3
)
)
(
wral
(
λ x7 .
wbr
(
cfv
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x7
)
(
cv
x6
)
)
(
cfv
(
cfv
(
cv
x7
)
(
cv
x2
)
)
cple
)
)
(
λ x7 .
cdm
(
cv
x2
)
)
)
)
)
)
(
cop
(
cfv
cnx
cds
)
(
cmpt2
(
λ x5 x6 .
cv
x3
)
(
λ x5 x6 .
cv
x3
)
(
λ x5 x6 .
csup
(
cun
(
crn
(
cmpt
(
λ x7 .
cdm
(
cv
x2
)
)
(
λ x7 .
co
(
cfv
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x7
)
(
cv
x6
)
)
(
cfv
(
cfv
(
cv
x7
)
(
cv
x2
)
)
cds
)
)
)
)
(
csn
cc0
)
)
cxr
clt
)
)
)
)
(
cpr
(
cop
(
cfv
cnx
chom
)
(
cv
x4
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x5 x6 .
cxp
(
cv
x3
)
(
cv
x3
)
)
(
λ x5 x6 .
cv
x3
)
(
λ x5 x6 .
cmpt2
(
λ x7 x8 .
co
(
cv
x6
)
(
cfv
(
cv
x5
)
c2nd
)
(
cv
x4
)
)
(
λ x7 x8 .
cfv
(
cv
x5
)
(
cv
x4
)
)
(
λ x7 x8 .
cmpt
(
λ x9 .
cdm
(
cv
x2
)
)
(
λ x9 .
co
(
cfv
(
cv
x9
)
(
cv
x7
)
)
(
cfv
(
cv
x9
)
(
cv
x8
)
)
(
co
(
cop
(
cfv
(
cv
x9
)
(
cfv
(
cv
x5
)
c1st
)
)
(
cfv
(
cv
x9
)
(
cfv
(
cv
x5
)
c2nd
)
)
)
(
cfv
(
cv
x9
)
(
cv
x6
)
)
(
cfv
(
cfv
(
cv
x9
)
(
cv
x2
)
)
cco
)
)
)
)
)
)
)
)
)
)
)
)
)
⟶
wceq
cpws
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
cfv
(
cv
x1
)
csca
)
(
cxp
(
cv
x2
)
(
csn
(
cv
x1
)
)
)
cprds
)
)
⟶
x0
)
⟶
x0
Theorem
df_sca
:
wceq
csca
(
cslot
c5
)
(proof)
Theorem
df_vsca
:
wceq
cvsca
(
cslot
c6
)
(proof)
Theorem
df_ip
:
wceq
cip
(
cslot
c8
)
(proof)
Theorem
df_tset
:
wceq
cts
(
cslot
c9
)
(proof)
Theorem
df_ple
:
wceq
cple
(
cslot
(
cdc
c1
cc0
)
)
(proof)
Theorem
df_ocomp
:
wceq
coc
(
cslot
(
cdc
c1
c1
)
)
(proof)
Theorem
df_ds
:
wceq
cds
(
cslot
(
cdc
c1
c2
)
)
(proof)
Theorem
df_unif
:
wceq
cunif
(
cslot
(
cdc
c1
c3
)
)
(proof)
Theorem
df_hom
:
wceq
chom
(
cslot
(
cdc
c1
c4
)
)
(proof)
Theorem
df_cco
:
wceq
cco
(
cslot
(
cdc
c1
c5
)
)
(proof)
Theorem
df_rest
:
wceq
crest
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
crn
(
cmpt
(
λ x2 .
cv
x0
)
(
λ x2 .
cin
(
cv
x2
)
(
cv
x1
)
)
)
)
)
(proof)
Theorem
df_topn
:
wceq
ctopn
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cfv
(
cv
x0
)
cts
)
(
cfv
(
cv
x0
)
cbs
)
crest
)
)
(proof)
Theorem
df_0g
:
wceq
c0g
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cio
(
λ x1 .
wa
(
wcel
(
cv
x1
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wral
(
λ x2 .
wa
(
wceq
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x2
)
)
(
wceq
(
co
(
cv
x2
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x2
)
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
)
)
)
(proof)
Theorem
df_gsum
:
wceq
cgsu
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
crab
(
λ x2 .
wral
(
λ x3 .
wa
(
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x3
)
)
(
wceq
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x3
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
cif
(
wss
(
crn
(
cv
x1
)
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
c0g
)
(
cif
(
wcel
(
cdm
(
cv
x1
)
)
(
crn
cfz
)
)
(
cio
(
λ x3 .
wex
(
λ x4 .
wrex
(
λ x5 .
wa
(
wceq
(
cdm
(
cv
x1
)
)
(
co
(
cv
x4
)
(
cv
x5
)
cfz
)
)
(
wceq
(
cv
x3
)
(
cfv
(
cv
x5
)
(
cseq
(
cfv
(
cv
x0
)
cplusg
)
(
cv
x1
)
(
cv
x4
)
)
)
)
)
(
λ x5 .
cfv
(
cv
x4
)
cuz
)
)
)
)
(
cio
(
λ x3 .
wex
(
λ x4 .
wsbc
(
λ x5 .
wa
(
wf1o
(
co
c1
(
cfv
(
cv
x5
)
chash
)
cfz
)
(
cv
x5
)
(
cv
x4
)
)
(
wceq
(
cv
x3
)
(
cfv
(
cfv
(
cv
x5
)
chash
)
(
cseq
(
cfv
(
cv
x0
)
cplusg
)
(
ccom
(
cv
x1
)
(
cv
x4
)
)
c1
)
)
)
)
(
cima
(
ccnv
(
cv
x1
)
)
(
cdif
cvv
(
cv
x2
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
df_topgen
:
wceq
ctg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cab
(
λ x1 .
wss
(
cv
x1
)
(
cuni
(
cin
(
cv
x0
)
(
cpw
(
cv
x1
)
)
)
)
)
)
)
(proof)
Theorem
df_pt
:
wceq
cpt
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cfv
(
cab
(
λ x1 .
wex
(
λ x2 .
wa
(
w3a
(
wfn
(
cv
x2
)
(
cdm
(
cv
x0
)
)
)
(
wral
(
λ x3 .
wcel
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x3
)
(
cv
x0
)
)
)
(
λ x3 .
cdm
(
cv
x0
)
)
)
(
wrex
(
λ x3 .
wral
(
λ x4 .
wceq
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cuni
(
cfv
(
cv
x4
)
(
cv
x0
)
)
)
)
(
λ x4 .
cdif
(
cdm
(
cv
x0
)
)
(
cv
x3
)
)
)
(
λ x3 .
cfn
)
)
)
(
wceq
(
cv
x1
)
(
cixp
(
λ x3 .
cdm
(
cv
x0
)
)
(
λ x3 .
cfv
(
cv
x3
)
(
cv
x2
)
)
)
)
)
)
)
ctg
)
)
(proof)
Theorem
df_prds
:
wceq
cprds
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
cixp
(
λ x2 .
cdm
(
cv
x1
)
)
(
λ x2 .
cfv
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cbs
)
)
(
λ x2 .
csb
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cixp
(
λ x5 .
cdm
(
cv
x1
)
)
(
λ x5 .
co
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
(
cfv
(
cfv
(
cv
x5
)
(
cv
x1
)
)
chom
)
)
)
)
(
λ x3 .
cun
(
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x2
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
cmpt
(
λ x6 .
cdm
(
cv
x1
)
)
(
λ x6 .
co
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
(
cfv
(
cfv
(
cv
x6
)
(
cv
x1
)
)
cplusg
)
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
cmpt
(
λ x6 .
cdm
(
cv
x1
)
)
(
λ x6 .
co
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
(
cfv
(
cfv
(
cv
x6
)
(
cv
x1
)
)
cmulr
)
)
)
)
)
)
(
ctp
(
cop
(
cfv
cnx
csca
)
(
cv
x0
)
)
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x4 x5 .
cfv
(
cv
x0
)
cbs
)
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
cmpt
(
λ x6 .
cdm
(
cv
x1
)
)
(
λ x6 .
co
(
cv
x4
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
(
cfv
(
cfv
(
cv
x6
)
(
cv
x1
)
)
cvsca
)
)
)
)
)
(
cop
(
cfv
cnx
cip
)
(
cmpt2
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
co
(
cv
x0
)
(
cmpt
(
λ x6 .
cdm
(
cv
x1
)
)
(
λ x6 .
co
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
(
cfv
(
cfv
(
cv
x6
)
(
cv
x1
)
)
cip
)
)
)
cgsu
)
)
)
)
)
(
cun
(
ctp
(
cop
(
cfv
cnx
cts
)
(
cfv
(
ccom
ctopn
(
cv
x1
)
)
cpt
)
)
(
cop
(
cfv
cnx
cple
)
(
copab
(
λ x4 x5 .
wa
(
wss
(
cpr
(
cv
x4
)
(
cv
x5
)
)
(
cv
x2
)
)
(
wral
(
λ x6 .
wbr
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
(
cfv
(
cfv
(
cv
x6
)
(
cv
x1
)
)
cple
)
)
(
λ x6 .
cdm
(
cv
x1
)
)
)
)
)
)
(
cop
(
cfv
cnx
cds
)
(
cmpt2
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
csup
(
cun
(
crn
(
cmpt
(
λ x6 .
cdm
(
cv
x1
)
)
(
λ x6 .
co
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
(
cfv
(
cfv
(
cv
x6
)
(
cv
x1
)
)
cds
)
)
)
)
(
csn
cc0
)
)
cxr
clt
)
)
)
)
(
cpr
(
cop
(
cfv
cnx
chom
)
(
cv
x3
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x4 x5 .
cxp
(
cv
x2
)
(
cv
x2
)
)
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
cmpt2
(
λ x6 x7 .
co
(
cv
x5
)
(
cfv
(
cv
x4
)
c2nd
)
(
cv
x3
)
)
(
λ x6 x7 .
cfv
(
cv
x4
)
(
cv
x3
)
)
(
λ x6 x7 .
cmpt
(
λ x8 .
cdm
(
cv
x1
)
)
(
λ x8 .
co
(
cfv
(
cv
x8
)
(
cv
x6
)
)
(
cfv
(
cv
x8
)
(
cv
x7
)
)
(
co
(
cop
(
cfv
(
cv
x8
)
(
cfv
(
cv
x4
)
c1st
)
)
(
cfv
(
cv
x8
)
(
cfv
(
cv
x4
)
c2nd
)
)
)
(
cfv
(
cv
x8
)
(
cv
x5
)
)
(
cfv
(
cfv
(
cv
x8
)
(
cv
x1
)
)
cco
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
df_pws
:
wceq
cpws
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
cfv
(
cv
x0
)
csca
)
(
cxp
(
cv
x1
)
(
csn
(
cv
x0
)
)
)
cprds
)
)
(proof)