vout |
---|
PrCit../9d42f.. 3.19 barsTMKfm../03bd6.. ownership of daa39.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMVCQ../85ff3.. ownership of d4210.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0PUNba../e97d3.. doc published by Pr4zB..Param 76a6c.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam notnot : ο → οDefinition d4ea7.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (76a6c.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ x0 x1 x10 ⟶ not (x0 x2 x10) ⟶ not (x0 x3 x10) ⟶ not (x0 x4 x10) ⟶ x0 x5 x10 ⟶ x0 x6 x10 ⟶ not (x0 x7 x10) ⟶ x0 x8 x10 ⟶ not (x0 x9 x10) ⟶ x11) ⟶ x11Known da53f.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ 76a6c.. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ⟶ 76a6c.. x1 x2 x3 x5 x4 x6 x7 x8 x9 x10Theorem daa39.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ d4ea7.. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ d4ea7.. x1 x2 x3 x5 x4 x6 x7 x8 x9 x10 x11 (proof) |
|