Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrNox..
/
bdc0d..
PUSzL..
/
71e0e..
vout
PrNox..
/
54f52..
0.10 bars
TMQLX..
/
fe752..
ownership of
402d4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF3B..
/
c8240..
ownership of
c145b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKLX..
/
26da1..
ownership of
9ec7a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFQm..
/
50bc5..
ownership of
59625..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa63..
/
82938..
ownership of
e8f5f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUPE..
/
47c16..
ownership of
01696..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWvi..
/
47ecb..
ownership of
ab244..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMGA..
/
8780b..
ownership of
c716e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGiu..
/
43be4..
ownership of
8ecc5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJLs..
/
f36fa..
ownership of
b65f2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWnh..
/
cc58a..
ownership of
b9b55..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNty..
/
cbd2e..
ownership of
7a46b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTyL..
/
4677c..
ownership of
6b8fe..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbij..
/
e944d..
ownership of
50bdd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFJM..
/
efa19..
ownership of
4f87b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHB6..
/
5c3a1..
ownership of
ea1ee..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ8F..
/
9e806..
ownership of
57c92..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSXu..
/
e6fa8..
ownership of
c859c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF2E..
/
da3dd..
ownership of
2fda7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFMu..
/
6aca2..
ownership of
ac9d4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKQv..
/
3f83e..
ownership of
f612f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdKN..
/
5c4ec..
ownership of
d40bc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPU9..
/
daf25..
ownership of
948a5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXHY..
/
ac13f..
ownership of
43b0a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEgc..
/
e235f..
ownership of
2d5de..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPSS..
/
86889..
ownership of
c67f1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJu9..
/
19c36..
ownership of
5a077..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPk1..
/
f85e2..
ownership of
d80c7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHuZ..
/
23e20..
ownership of
db872..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZpY..
/
fa69c..
ownership of
2f5ad..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTNb..
/
626a6..
ownership of
7815b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbjK..
/
9fc01..
ownership of
aa095..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSxU..
/
c4cb1..
ownership of
37d0a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPXw..
/
29e02..
ownership of
48957..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSkQ..
/
36344..
ownership of
3f574..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMY6f..
/
fd398..
ownership of
2e213..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUbMc..
/
6a4c5..
doc published by
PrCmT..
Known
df_dioph__df_squarenn__df_pell1qr__df_pell14qr__df_pell1234qr__df_pellfund__df_rmx__df_rmy__df_lfig__df_lnm__df_lnr__df_ldgis__df_mnc__df_plylt__df_dgraa__df_mpaa__df_itgo__df_za
:
∀ x0 : ο .
(
wceq
cdioph
(
cmpt
(
λ x1 .
cn0
)
(
λ x1 .
crn
(
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cuz
)
(
λ x2 x3 .
cfv
(
co
c1
(
cv
x2
)
cfz
)
cmzp
)
(
λ x2 x3 .
cab
(
λ x4 .
wrex
(
λ x5 .
wa
(
wceq
(
cv
x4
)
(
cres
(
cv
x5
)
(
co
c1
(
cv
x1
)
cfz
)
)
)
(
wceq
(
cfv
(
cv
x5
)
(
cv
x3
)
)
cc0
)
)
(
λ x5 .
co
cn0
(
co
c1
(
cv
x2
)
cfz
)
cmap
)
)
)
)
)
)
⟶
wceq
csquarenn
(
crab
(
λ x1 .
wcel
(
cfv
(
cv
x1
)
csqrt
)
cq
)
(
λ x1 .
cn
)
)
⟶
wceq
cpell1qr
(
cmpt
(
λ x1 .
cdif
cn
csquarenn
)
(
λ x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wa
(
wceq
(
cv
x2
)
(
co
(
cv
x3
)
(
co
(
cfv
(
cv
x1
)
csqrt
)
(
cv
x4
)
cmul
)
caddc
)
)
(
wceq
(
co
(
co
(
cv
x3
)
c2
cexp
)
(
co
(
cv
x1
)
(
co
(
cv
x4
)
c2
cexp
)
cmul
)
cmin
)
c1
)
)
(
λ x4 .
cn0
)
)
(
λ x3 .
cn0
)
)
(
λ x2 .
cr
)
)
)
⟶
wceq
cpell14qr
(
cmpt
(
λ x1 .
cdif
cn
csquarenn
)
(
λ x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wa
(
wceq
(
cv
x2
)
(
co
(
cv
x3
)
(
co
(
cfv
(
cv
x1
)
csqrt
)
(
cv
x4
)
cmul
)
caddc
)
)
(
wceq
(
co
(
co
(
cv
x3
)
c2
cexp
)
(
co
(
cv
x1
)
(
co
(
cv
x4
)
c2
cexp
)
cmul
)
cmin
)
c1
)
)
(
λ x4 .
cz
)
)
(
λ x3 .
cn0
)
)
(
λ x2 .
cr
)
)
)
⟶
wceq
cpell1234qr
(
cmpt
(
λ x1 .
cdif
cn
csquarenn
)
(
λ x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wa
(
wceq
(
cv
x2
)
(
co
(
cv
x3
)
(
co
(
cfv
(
cv
x1
)
csqrt
)
(
cv
x4
)
cmul
)
caddc
)
)
(
wceq
(
co
(
co
(
cv
x3
)
c2
cexp
)
(
co
(
cv
x1
)
(
co
(
cv
x4
)
c2
cexp
)
cmul
)
cmin
)
c1
)
)
(
λ x4 .
cz
)
)
(
λ x3 .
cz
)
)
(
λ x2 .
cr
)
)
)
⟶
wceq
cpellfund
(
cmpt
(
λ x1 .
cdif
cn
csquarenn
)
(
λ x1 .
cinf
(
crab
(
λ x2 .
wbr
c1
(
cv
x2
)
clt
)
(
λ x2 .
cfv
(
cv
x1
)
cpell14qr
)
)
cr
clt
)
)
⟶
wceq
crmx
(
cmpt2
(
λ x1 x2 .
cfv
c2
cuz
)
(
λ x1 x2 .
cz
)
(
λ x1 x2 .
cfv
(
cfv
(
co
(
co
(
cv
x1
)
(
cfv
(
co
(
co
(
cv
x1
)
c2
cexp
)
c1
cmin
)
csqrt
)
caddc
)
(
cv
x2
)
cexp
)
(
ccnv
(
cmpt
(
λ x3 .
cxp
cn0
cz
)
(
λ x3 .
co
(
cfv
(
cv
x3
)
c1st
)
(
co
(
cfv
(
co
(
co
(
cv
x1
)
c2
cexp
)
c1
cmin
)
csqrt
)
(
cfv
(
cv
x3
)
c2nd
)
cmul
)
caddc
)
)
)
)
c1st
)
)
⟶
wceq
crmy
(
cmpt2
(
λ x1 x2 .
cfv
c2
cuz
)
(
λ x1 x2 .
cz
)
(
λ x1 x2 .
cfv
(
cfv
(
co
(
co
(
cv
x1
)
(
cfv
(
co
(
co
(
cv
x1
)
c2
cexp
)
c1
cmin
)
csqrt
)
caddc
)
(
cv
x2
)
cexp
)
(
ccnv
(
cmpt
(
λ x3 .
cxp
cn0
cz
)
(
λ x3 .
co
(
cfv
(
cv
x3
)
c1st
)
(
co
(
cfv
(
co
(
co
(
cv
x1
)
c2
cexp
)
c1
cmin
)
csqrt
)
(
cfv
(
cv
x3
)
c2nd
)
cmul
)
caddc
)
)
)
)
c2nd
)
)
⟶
wceq
clfig
(
crab
(
λ x1 .
wcel
(
cfv
(
cv
x1
)
cbs
)
(
cima
(
cfv
(
cv
x1
)
clspn
)
(
cin
(
cpw
(
cfv
(
cv
x1
)
cbs
)
)
cfn
)
)
)
(
λ x1 .
clmod
)
)
⟶
wceq
clnm
(
crab
(
λ x1 .
wral
(
λ x2 .
wcel
(
co
(
cv
x1
)
(
cv
x2
)
cress
)
clfig
)
(
λ x2 .
cfv
(
cv
x1
)
clss
)
)
(
λ x1 .
clmod
)
)
⟶
wceq
clnr
(
crab
(
λ x1 .
wcel
(
cfv
(
cv
x1
)
crglmod
)
clnm
)
(
λ x1 .
crg
)
)
⟶
wceq
cldgis
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cfv
(
cv
x1
)
cpl1
)
clidl
)
(
λ x2 .
cmpt
(
λ x3 .
cn0
)
(
λ x3 .
cab
(
λ x4 .
wrex
(
λ x5 .
wa
(
wbr
(
cfv
(
cv
x5
)
(
cfv
(
cv
x1
)
cdg1
)
)
(
cv
x3
)
cle
)
(
wceq
(
cv
x4
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x5
)
cco1
)
)
)
)
(
λ x5 .
cv
x2
)
)
)
)
)
)
⟶
wceq
cmnc
(
cmpt
(
λ x1 .
cpw
cc
)
(
λ x1 .
crab
(
λ x2 .
wceq
(
cfv
(
cfv
(
cv
x2
)
cdgr
)
(
cfv
(
cv
x2
)
ccoe
)
)
c1
)
(
λ x2 .
cfv
(
cv
x1
)
cply
)
)
)
⟶
wceq
cplylt
(
cmpt2
(
λ x1 x2 .
cpw
cc
)
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
crab
(
λ x3 .
wo
(
wceq
(
cv
x3
)
c0p
)
(
wbr
(
cfv
(
cv
x3
)
cdgr
)
(
cv
x2
)
clt
)
)
(
λ x3 .
cfv
(
cv
x1
)
cply
)
)
)
⟶
wceq
cdgraa
(
cmpt
(
λ x1 .
caa
)
(
λ x1 .
cinf
(
crab
(
λ x2 .
wrex
(
λ x3 .
wa
(
wceq
(
cfv
(
cv
x3
)
cdgr
)
(
cv
x2
)
)
(
wceq
(
cfv
(
cv
x1
)
(
cv
x3
)
)
cc0
)
)
(
λ x3 .
cdif
(
cfv
cq
cply
)
(
csn
c0p
)
)
)
(
λ x2 .
cn
)
)
cr
clt
)
)
⟶
wceq
cmpaa
(
cmpt
(
λ x1 .
caa
)
(
λ x1 .
crio
(
λ x2 .
w3a
(
wceq
(
cfv
(
cv
x2
)
cdgr
)
(
cfv
(
cv
x1
)
cdgraa
)
)
(
wceq
(
cfv
(
cv
x1
)
(
cv
x2
)
)
cc0
)
(
wceq
(
cfv
(
cfv
(
cv
x1
)
cdgraa
)
(
cfv
(
cv
x2
)
ccoe
)
)
c1
)
)
(
λ x2 .
cfv
cq
cply
)
)
)
⟶
wceq
citgo
(
cmpt
(
λ x1 .
cpw
cc
)
(
λ x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wa
(
wceq
(
cfv
(
cv
x2
)
(
cv
x3
)
)
cc0
)
(
wceq
(
cfv
(
cfv
(
cv
x3
)
cdgr
)
(
cfv
(
cv
x3
)
ccoe
)
)
c1
)
)
(
λ x3 .
cfv
(
cv
x1
)
cply
)
)
(
λ x2 .
cc
)
)
)
⟶
wceq
cza
(
cfv
cz
citgo
)
⟶
x0
)
⟶
x0
Theorem
df_dioph
:
wceq
cdioph
(
cmpt
(
λ x0 .
cn0
)
(
λ x0 .
crn
(
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
cuz
)
(
λ x1 x2 .
cfv
(
co
c1
(
cv
x1
)
cfz
)
cmzp
)
(
λ x1 x2 .
cab
(
λ x3 .
wrex
(
λ x4 .
wa
(
wceq
(
cv
x3
)
(
cres
(
cv
x4
)
(
co
c1
(
cv
x0
)
cfz
)
)
)
(
wceq
(
cfv
(
cv
x4
)
(
cv
x2
)
)
cc0
)
)
(
λ x4 .
co
cn0
(
co
c1
(
cv
x1
)
cfz
)
cmap
)
)
)
)
)
)
(proof)
Theorem
df_squarenn
:
wceq
csquarenn
(
crab
(
λ x0 .
wcel
(
cfv
(
cv
x0
)
csqrt
)
cq
)
(
λ x0 .
cn
)
)
(proof)
Theorem
df_pell1qr
:
wceq
cpell1qr
(
cmpt
(
λ x0 .
cdif
cn
csquarenn
)
(
λ x0 .
crab
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wa
(
wceq
(
cv
x1
)
(
co
(
cv
x2
)
(
co
(
cfv
(
cv
x0
)
csqrt
)
(
cv
x3
)
cmul
)
caddc
)
)
(
wceq
(
co
(
co
(
cv
x2
)
c2
cexp
)
(
co
(
cv
x0
)
(
co
(
cv
x3
)
c2
cexp
)
cmul
)
cmin
)
c1
)
)
(
λ x3 .
cn0
)
)
(
λ x2 .
cn0
)
)
(
λ x1 .
cr
)
)
)
(proof)
Theorem
df_pell14qr
:
wceq
cpell14qr
(
cmpt
(
λ x0 .
cdif
cn
csquarenn
)
(
λ x0 .
crab
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wa
(
wceq
(
cv
x1
)
(
co
(
cv
x2
)
(
co
(
cfv
(
cv
x0
)
csqrt
)
(
cv
x3
)
cmul
)
caddc
)
)
(
wceq
(
co
(
co
(
cv
x2
)
c2
cexp
)
(
co
(
cv
x0
)
(
co
(
cv
x3
)
c2
cexp
)
cmul
)
cmin
)
c1
)
)
(
λ x3 .
cz
)
)
(
λ x2 .
cn0
)
)
(
λ x1 .
cr
)
)
)
(proof)
Theorem
df_pell1234qr
:
wceq
cpell1234qr
(
cmpt
(
λ x0 .
cdif
cn
csquarenn
)
(
λ x0 .
crab
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wa
(
wceq
(
cv
x1
)
(
co
(
cv
x2
)
(
co
(
cfv
(
cv
x0
)
csqrt
)
(
cv
x3
)
cmul
)
caddc
)
)
(
wceq
(
co
(
co
(
cv
x2
)
c2
cexp
)
(
co
(
cv
x0
)
(
co
(
cv
x3
)
c2
cexp
)
cmul
)
cmin
)
c1
)
)
(
λ x3 .
cz
)
)
(
λ x2 .
cz
)
)
(
λ x1 .
cr
)
)
)
(proof)
Theorem
df_pellfund
:
wceq
cpellfund
(
cmpt
(
λ x0 .
cdif
cn
csquarenn
)
(
λ x0 .
cinf
(
crab
(
λ x1 .
wbr
c1
(
cv
x1
)
clt
)
(
λ x1 .
cfv
(
cv
x0
)
cpell14qr
)
)
cr
clt
)
)
(proof)
Theorem
df_rmx
:
wceq
crmx
(
cmpt2
(
λ x0 x1 .
cfv
c2
cuz
)
(
λ x0 x1 .
cz
)
(
λ x0 x1 .
cfv
(
cfv
(
co
(
co
(
cv
x0
)
(
cfv
(
co
(
co
(
cv
x0
)
c2
cexp
)
c1
cmin
)
csqrt
)
caddc
)
(
cv
x1
)
cexp
)
(
ccnv
(
cmpt
(
λ x2 .
cxp
cn0
cz
)
(
λ x2 .
co
(
cfv
(
cv
x2
)
c1st
)
(
co
(
cfv
(
co
(
co
(
cv
x0
)
c2
cexp
)
c1
cmin
)
csqrt
)
(
cfv
(
cv
x2
)
c2nd
)
cmul
)
caddc
)
)
)
)
c1st
)
)
(proof)
Theorem
df_rmy
:
wceq
crmy
(
cmpt2
(
λ x0 x1 .
cfv
c2
cuz
)
(
λ x0 x1 .
cz
)
(
λ x0 x1 .
cfv
(
cfv
(
co
(
co
(
cv
x0
)
(
cfv
(
co
(
co
(
cv
x0
)
c2
cexp
)
c1
cmin
)
csqrt
)
caddc
)
(
cv
x1
)
cexp
)
(
ccnv
(
cmpt
(
λ x2 .
cxp
cn0
cz
)
(
λ x2 .
co
(
cfv
(
cv
x2
)
c1st
)
(
co
(
cfv
(
co
(
co
(
cv
x0
)
c2
cexp
)
c1
cmin
)
csqrt
)
(
cfv
(
cv
x2
)
c2nd
)
cmul
)
caddc
)
)
)
)
c2nd
)
)
(proof)
Theorem
df_lfig
:
wceq
clfig
(
crab
(
λ x0 .
wcel
(
cfv
(
cv
x0
)
cbs
)
(
cima
(
cfv
(
cv
x0
)
clspn
)
(
cin
(
cpw
(
cfv
(
cv
x0
)
cbs
)
)
cfn
)
)
)
(
λ x0 .
clmod
)
)
(proof)
Theorem
df_lnm
:
wceq
clnm
(
crab
(
λ x0 .
wral
(
λ x1 .
wcel
(
co
(
cv
x0
)
(
cv
x1
)
cress
)
clfig
)
(
λ x1 .
cfv
(
cv
x0
)
clss
)
)
(
λ x0 .
clmod
)
)
(proof)
Theorem
df_lnr
:
wceq
clnr
(
crab
(
λ x0 .
wcel
(
cfv
(
cv
x0
)
crglmod
)
clnm
)
(
λ x0 .
crg
)
)
(proof)
Theorem
df_ldgis
:
wceq
cldgis
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cfv
(
cv
x0
)
cpl1
)
clidl
)
(
λ x1 .
cmpt
(
λ x2 .
cn0
)
(
λ x2 .
cab
(
λ x3 .
wrex
(
λ x4 .
wa
(
wbr
(
cfv
(
cv
x4
)
(
cfv
(
cv
x0
)
cdg1
)
)
(
cv
x2
)
cle
)
(
wceq
(
cv
x3
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x4
)
cco1
)
)
)
)
(
λ x4 .
cv
x1
)
)
)
)
)
)
(proof)
Theorem
df_mnc
:
wceq
cmnc
(
cmpt
(
λ x0 .
cpw
cc
)
(
λ x0 .
crab
(
λ x1 .
wceq
(
cfv
(
cfv
(
cv
x1
)
cdgr
)
(
cfv
(
cv
x1
)
ccoe
)
)
c1
)
(
λ x1 .
cfv
(
cv
x0
)
cply
)
)
)
(proof)
Theorem
df_plylt
:
wceq
cplylt
(
cmpt2
(
λ x0 x1 .
cpw
cc
)
(
λ x0 x1 .
cn0
)
(
λ x0 x1 .
crab
(
λ x2 .
wo
(
wceq
(
cv
x2
)
c0p
)
(
wbr
(
cfv
(
cv
x2
)
cdgr
)
(
cv
x1
)
clt
)
)
(
λ x2 .
cfv
(
cv
x0
)
cply
)
)
)
(proof)
Theorem
df_dgraa
:
wceq
cdgraa
(
cmpt
(
λ x0 .
caa
)
(
λ x0 .
cinf
(
crab
(
λ x1 .
wrex
(
λ x2 .
wa
(
wceq
(
cfv
(
cv
x2
)
cdgr
)
(
cv
x1
)
)
(
wceq
(
cfv
(
cv
x0
)
(
cv
x2
)
)
cc0
)
)
(
λ x2 .
cdif
(
cfv
cq
cply
)
(
csn
c0p
)
)
)
(
λ x1 .
cn
)
)
cr
clt
)
)
(proof)
Theorem
df_mpaa
:
wceq
cmpaa
(
cmpt
(
λ x0 .
caa
)
(
λ x0 .
crio
(
λ x1 .
w3a
(
wceq
(
cfv
(
cv
x1
)
cdgr
)
(
cfv
(
cv
x0
)
cdgraa
)
)
(
wceq
(
cfv
(
cv
x0
)
(
cv
x1
)
)
cc0
)
(
wceq
(
cfv
(
cfv
(
cv
x0
)
cdgraa
)
(
cfv
(
cv
x1
)
ccoe
)
)
c1
)
)
(
λ x1 .
cfv
cq
cply
)
)
)
(proof)
Theorem
df_itgo
:
wceq
citgo
(
cmpt
(
λ x0 .
cpw
cc
)
(
λ x0 .
crab
(
λ x1 .
wrex
(
λ x2 .
wa
(
wceq
(
cfv
(
cv
x1
)
(
cv
x2
)
)
cc0
)
(
wceq
(
cfv
(
cfv
(
cv
x2
)
cdgr
)
(
cfv
(
cv
x2
)
ccoe
)
)
c1
)
)
(
λ x2 .
cfv
(
cv
x0
)
cply
)
)
(
λ x1 .
cc
)
)
)
(proof)
Theorem
df_za
:
wceq
cza
(
cfv
cz
citgo
)
(proof)