Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrNox../bdc0d..
PUSzL../71e0e..
vout
PrNox../54f52.. 0.10 bars
TMQLX../fe752.. ownership of 402d4.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMF3B../c8240.. ownership of c145b.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMKLX../26da1.. ownership of 9ec7a.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMFQm../50bc5.. ownership of 59625.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMa63../82938.. ownership of e8f5f.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMUPE../47c16.. ownership of 01696.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMWvi../47ecb.. ownership of ab244.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMMGA../8780b.. ownership of c716e.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMGiu../43be4.. ownership of 8ecc5.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMJLs../f36fa.. ownership of b65f2.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMWnh../cc58a.. ownership of b9b55.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMNty../cbd2e.. ownership of 7a46b.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMTyL../4677c.. ownership of 6b8fe.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMbij../e944d.. ownership of 50bdd.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMFJM../efa19.. ownership of 4f87b.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMHB6../5c3a1.. ownership of ea1ee.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMZ8F../9e806.. ownership of 57c92.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMSXu../e6fa8.. ownership of c859c.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMF2E../da3dd.. ownership of 2fda7.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMFMu../6aca2.. ownership of ac9d4.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMKQv../3f83e.. ownership of f612f.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMdKN../5c4ec.. ownership of d40bc.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMPU9../daf25.. ownership of 948a5.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMXHY../ac13f.. ownership of 43b0a.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMEgc../e235f.. ownership of 2d5de.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMPSS../86889.. ownership of c67f1.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMJu9../19c36.. ownership of 5a077.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMPk1../f85e2.. ownership of d80c7.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMHuZ../23e20.. ownership of db872.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMZpY../fa69c.. ownership of 2f5ad.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMTNb../626a6.. ownership of 7815b.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMbjK../9fc01.. ownership of aa095.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMSxU../c4cb1.. ownership of 37d0a.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMPXw../29e02.. ownership of 48957.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMSkQ../36344.. ownership of 3f574.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMY6f../fd398.. ownership of 2e213.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
PUbMc../6a4c5.. doc published by PrCmT..
Known df_dioph__df_squarenn__df_pell1qr__df_pell14qr__df_pell1234qr__df_pellfund__df_rmx__df_rmy__df_lfig__df_lnm__df_lnr__df_ldgis__df_mnc__df_plylt__df_dgraa__df_mpaa__df_itgo__df_za : ∀ x0 : ο . (wceq cdioph (cmpt (λ x1 . cn0) (λ x1 . crn (cmpt2 (λ x2 x3 . cfv (cv x1) cuz) (λ x2 x3 . cfv (co c1 (cv x2) cfz) cmzp) (λ x2 x3 . cab (λ x4 . wrex (λ x5 . wa (wceq (cv x4) (cres (cv x5) (co c1 (cv x1) cfz))) (wceq (cfv (cv x5) (cv x3)) cc0)) (λ x5 . co cn0 (co c1 (cv x2) cfz) cmap))))))wceq csquarenn (crab (λ x1 . wcel (cfv (cv x1) csqrt) cq) (λ x1 . cn))wceq cpell1qr (cmpt (λ x1 . cdif cn csquarenn) (λ x1 . crab (λ x2 . wrex (λ x3 . wrex (λ x4 . wa (wceq (cv x2) (co (cv x3) (co (cfv (cv x1) csqrt) (cv x4) cmul) caddc)) (wceq (co (co (cv x3) c2 cexp) (co (cv x1) (co (cv x4) c2 cexp) cmul) cmin) c1)) (λ x4 . cn0)) (λ x3 . cn0)) (λ x2 . cr)))wceq cpell14qr (cmpt (λ x1 . cdif cn csquarenn) (λ x1 . crab (λ x2 . wrex (λ x3 . wrex (λ x4 . wa (wceq (cv x2) (co (cv x3) (co (cfv (cv x1) csqrt) (cv x4) cmul) caddc)) (wceq (co (co (cv x3) c2 cexp) (co (cv x1) (co (cv x4) c2 cexp) cmul) cmin) c1)) (λ x4 . cz)) (λ x3 . cn0)) (λ x2 . cr)))wceq cpell1234qr (cmpt (λ x1 . cdif cn csquarenn) (λ x1 . crab (λ x2 . wrex (λ x3 . wrex (λ x4 . wa (wceq (cv x2) (co (cv x3) (co (cfv (cv x1) csqrt) (cv x4) cmul) caddc)) (wceq (co (co (cv x3) c2 cexp) (co (cv x1) (co (cv x4) c2 cexp) cmul) cmin) c1)) (λ x4 . cz)) (λ x3 . cz)) (λ x2 . cr)))wceq cpellfund (cmpt (λ x1 . cdif cn csquarenn) (λ x1 . cinf (crab (λ x2 . wbr c1 (cv x2) clt) (λ x2 . cfv (cv x1) cpell14qr)) cr clt))wceq crmx (cmpt2 (λ x1 x2 . cfv c2 cuz) (λ x1 x2 . cz) (λ x1 x2 . cfv (cfv (co (co (cv x1) (cfv (co (co (cv x1) c2 cexp) c1 cmin) csqrt) caddc) (cv x2) cexp) (ccnv (cmpt (λ x3 . cxp cn0 cz) (λ x3 . co (cfv (cv x3) c1st) (co (cfv (co (co (cv x1) c2 cexp) c1 cmin) csqrt) (cfv (cv x3) c2nd) cmul) caddc)))) c1st))wceq crmy (cmpt2 (λ x1 x2 . cfv c2 cuz) (λ x1 x2 . cz) (λ x1 x2 . cfv (cfv (co (co (cv x1) (cfv (co (co (cv x1) c2 cexp) c1 cmin) csqrt) caddc) (cv x2) cexp) (ccnv (cmpt (λ x3 . cxp cn0 cz) (λ x3 . co (cfv (cv x3) c1st) (co (cfv (co (co (cv x1) c2 cexp) c1 cmin) csqrt) (cfv (cv x3) c2nd) cmul) caddc)))) c2nd))wceq clfig (crab (λ x1 . wcel (cfv (cv x1) cbs) (cima (cfv (cv x1) clspn) (cin (cpw (cfv (cv x1) cbs)) cfn))) (λ x1 . clmod))wceq clnm (crab (λ x1 . wral (λ x2 . wcel (co (cv x1) (cv x2) cress) clfig) (λ x2 . cfv (cv x1) clss)) (λ x1 . clmod))wceq clnr (crab (λ x1 . wcel (cfv (cv x1) crglmod) clnm) (λ x1 . crg))wceq cldgis (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cfv (cv x1) cpl1) clidl) (λ x2 . cmpt (λ x3 . cn0) (λ x3 . cab (λ x4 . wrex (λ x5 . wa (wbr (cfv (cv x5) (cfv (cv x1) cdg1)) (cv x3) cle) (wceq (cv x4) (cfv (cv x3) (cfv (cv x5) cco1)))) (λ x5 . cv x2))))))wceq cmnc (cmpt (λ x1 . cpw cc) (λ x1 . crab (λ x2 . wceq (cfv (cfv (cv x2) cdgr) (cfv (cv x2) ccoe)) c1) (λ x2 . cfv (cv x1) cply)))wceq cplylt (cmpt2 (λ x1 x2 . cpw cc) (λ x1 x2 . cn0) (λ x1 x2 . crab (λ x3 . wo (wceq (cv x3) c0p) (wbr (cfv (cv x3) cdgr) (cv x2) clt)) (λ x3 . cfv (cv x1) cply)))wceq cdgraa (cmpt (λ x1 . caa) (λ x1 . cinf (crab (λ x2 . wrex (λ x3 . wa (wceq (cfv (cv x3) cdgr) (cv x2)) (wceq (cfv (cv x1) (cv x3)) cc0)) (λ x3 . cdif (cfv cq cply) (csn c0p))) (λ x2 . cn)) cr clt))wceq cmpaa (cmpt (λ x1 . caa) (λ x1 . crio (λ x2 . w3a (wceq (cfv (cv x2) cdgr) (cfv (cv x1) cdgraa)) (wceq (cfv (cv x1) (cv x2)) cc0) (wceq (cfv (cfv (cv x1) cdgraa) (cfv (cv x2) ccoe)) c1)) (λ x2 . cfv cq cply)))wceq citgo (cmpt (λ x1 . cpw cc) (λ x1 . crab (λ x2 . wrex (λ x3 . wa (wceq (cfv (cv x2) (cv x3)) cc0) (wceq (cfv (cfv (cv x3) cdgr) (cfv (cv x3) ccoe)) c1)) (λ x3 . cfv (cv x1) cply)) (λ x2 . cc)))wceq cza (cfv cz citgo)x0)x0
Theorem df_dioph : wceq cdioph (cmpt (λ x0 . cn0) (λ x0 . crn (cmpt2 (λ x1 x2 . cfv (cv x0) cuz) (λ x1 x2 . cfv (co c1 (cv x1) cfz) cmzp) (λ x1 x2 . cab (λ x3 . wrex (λ x4 . wa (wceq (cv x3) (cres (cv x4) (co c1 (cv x0) cfz))) (wceq (cfv (cv x4) (cv x2)) cc0)) (λ x4 . co cn0 (co c1 (cv x1) cfz) cmap)))))) (proof)
Theorem df_squarenn : wceq csquarenn (crab (λ x0 . wcel (cfv (cv x0) csqrt) cq) (λ x0 . cn)) (proof)
Theorem df_pell1qr : wceq cpell1qr (cmpt (λ x0 . cdif cn csquarenn) (λ x0 . crab (λ x1 . wrex (λ x2 . wrex (λ x3 . wa (wceq (cv x1) (co (cv x2) (co (cfv (cv x0) csqrt) (cv x3) cmul) caddc)) (wceq (co (co (cv x2) c2 cexp) (co (cv x0) (co (cv x3) c2 cexp) cmul) cmin) c1)) (λ x3 . cn0)) (λ x2 . cn0)) (λ x1 . cr))) (proof)
Theorem df_pell14qr : wceq cpell14qr (cmpt (λ x0 . cdif cn csquarenn) (λ x0 . crab (λ x1 . wrex (λ x2 . wrex (λ x3 . wa (wceq (cv x1) (co (cv x2) (co (cfv (cv x0) csqrt) (cv x3) cmul) caddc)) (wceq (co (co (cv x2) c2 cexp) (co (cv x0) (co (cv x3) c2 cexp) cmul) cmin) c1)) (λ x3 . cz)) (λ x2 . cn0)) (λ x1 . cr))) (proof)
Theorem df_pell1234qr : wceq cpell1234qr (cmpt (λ x0 . cdif cn csquarenn) (λ x0 . crab (λ x1 . wrex (λ x2 . wrex (λ x3 . wa (wceq (cv x1) (co (cv x2) (co (cfv (cv x0) csqrt) (cv x3) cmul) caddc)) (wceq (co (co (cv x2) c2 cexp) (co (cv x0) (co (cv x3) c2 cexp) cmul) cmin) c1)) (λ x3 . cz)) (λ x2 . cz)) (λ x1 . cr))) (proof)
Theorem df_pellfund : wceq cpellfund (cmpt (λ x0 . cdif cn csquarenn) (λ x0 . cinf (crab (λ x1 . wbr c1 (cv x1) clt) (λ x1 . cfv (cv x0) cpell14qr)) cr clt)) (proof)
Theorem df_rmx : wceq crmx (cmpt2 (λ x0 x1 . cfv c2 cuz) (λ x0 x1 . cz) (λ x0 x1 . cfv (cfv (co (co (cv x0) (cfv (co (co (cv x0) c2 cexp) c1 cmin) csqrt) caddc) (cv x1) cexp) (ccnv (cmpt (λ x2 . cxp cn0 cz) (λ x2 . co (cfv (cv x2) c1st) (co (cfv (co (co (cv x0) c2 cexp) c1 cmin) csqrt) (cfv (cv x2) c2nd) cmul) caddc)))) c1st)) (proof)
Theorem df_rmy : wceq crmy (cmpt2 (λ x0 x1 . cfv c2 cuz) (λ x0 x1 . cz) (λ x0 x1 . cfv (cfv (co (co (cv x0) (cfv (co (co (cv x0) c2 cexp) c1 cmin) csqrt) caddc) (cv x1) cexp) (ccnv (cmpt (λ x2 . cxp cn0 cz) (λ x2 . co (cfv (cv x2) c1st) (co (cfv (co (co (cv x0) c2 cexp) c1 cmin) csqrt) (cfv (cv x2) c2nd) cmul) caddc)))) c2nd)) (proof)
Theorem df_lfig : wceq clfig (crab (λ x0 . wcel (cfv (cv x0) cbs) (cima (cfv (cv x0) clspn) (cin (cpw (cfv (cv x0) cbs)) cfn))) (λ x0 . clmod)) (proof)
Theorem df_lnm : wceq clnm (crab (λ x0 . wral (λ x1 . wcel (co (cv x0) (cv x1) cress) clfig) (λ x1 . cfv (cv x0) clss)) (λ x0 . clmod)) (proof)
Theorem df_lnr : wceq clnr (crab (λ x0 . wcel (cfv (cv x0) crglmod) clnm) (λ x0 . crg)) (proof)
Theorem df_ldgis : wceq cldgis (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cfv (cv x0) cpl1) clidl) (λ x1 . cmpt (λ x2 . cn0) (λ x2 . cab (λ x3 . wrex (λ x4 . wa (wbr (cfv (cv x4) (cfv (cv x0) cdg1)) (cv x2) cle) (wceq (cv x3) (cfv (cv x2) (cfv (cv x4) cco1)))) (λ x4 . cv x1)))))) (proof)
Theorem df_mnc : wceq cmnc (cmpt (λ x0 . cpw cc) (λ x0 . crab (λ x1 . wceq (cfv (cfv (cv x1) cdgr) (cfv (cv x1) ccoe)) c1) (λ x1 . cfv (cv x0) cply))) (proof)
Theorem df_plylt : wceq cplylt (cmpt2 (λ x0 x1 . cpw cc) (λ x0 x1 . cn0) (λ x0 x1 . crab (λ x2 . wo (wceq (cv x2) c0p) (wbr (cfv (cv x2) cdgr) (cv x1) clt)) (λ x2 . cfv (cv x0) cply))) (proof)
Theorem df_dgraa : wceq cdgraa (cmpt (λ x0 . caa) (λ x0 . cinf (crab (λ x1 . wrex (λ x2 . wa (wceq (cfv (cv x2) cdgr) (cv x1)) (wceq (cfv (cv x0) (cv x2)) cc0)) (λ x2 . cdif (cfv cq cply) (csn c0p))) (λ x1 . cn)) cr clt)) (proof)
Theorem df_mpaa : wceq cmpaa (cmpt (λ x0 . caa) (λ x0 . crio (λ x1 . w3a (wceq (cfv (cv x1) cdgr) (cfv (cv x0) cdgraa)) (wceq (cfv (cv x0) (cv x1)) cc0) (wceq (cfv (cfv (cv x0) cdgraa) (cfv (cv x1) ccoe)) c1)) (λ x1 . cfv cq cply))) (proof)
Theorem df_itgo : wceq citgo (cmpt (λ x0 . cpw cc) (λ x0 . crab (λ x1 . wrex (λ x2 . wa (wceq (cfv (cv x1) (cv x2)) cc0) (wceq (cfv (cfv (cv x2) cdgr) (cfv (cv x2) ccoe)) c1)) (λ x2 . cfv (cv x0) cply)) (λ x1 . cc))) (proof)
Theorem df_za : wceq cza (cfv cz citgo) (proof)