Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrEMz../3039e..
PUXPq../bfbd3..
vout
PrEMz../0f8a4.. 99.99 bars
TMFdV../e7ebf.. ownership of cdd84.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMVcy../6bfbd.. ownership of aab68.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMXJ8../abaa1.. ownership of fc83d.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMTNT../e6d35.. ownership of 23ecf.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMT1h../edd1b.. ownership of 8d752.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMYAy../7f449.. ownership of 61fe8.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMJ9w../fc719.. ownership of cae12.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMZnQ../a6c30.. ownership of 6f1f9.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMLCG../88e76.. ownership of 0b183.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMcUT../3c0c4.. ownership of 1897d.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMTic../8f74f.. ownership of 38b9f.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMdJC../32e8b.. ownership of b86fe.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMSz7../451b2.. ownership of 12c76.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMVjv../87d56.. ownership of d545a.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMc91../cc2de.. ownership of eea6d.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMbA7../a5697.. ownership of f6eb0.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
PUe8q../f5482.. doc published by PrHS6..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition MetaCat_terminal_pterminal_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x6 x4 (x5 x6)) (∀ x7 . x1 x6 x4 x7x7 = x5 x6))
Param pack_upack_u : ι(ιι) → ι
Definition struct_ustruct_u := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι . (∀ x4 . x4x2x3 x4x2)x1 (pack_u x2 x3))x1 x0
Param UnaryFuncHomHom_struct_u : ιιιο
Param struct_idstruct_id : ιι
Param lamSigma : ι(ιι) → ι
Param apap : ιιι
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Param ordsuccordsucc : ιι
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known pack_struct_u_Ipack_struct_u_I : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0x1 x2x0)struct_u (pack_u x0 x1)
Known In_0_1In_0_1 : 01
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known 66c4c..Hom_struct_u_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . UnaryFuncHom (pack_u x0 x2) (pack_u x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0ap x4 (x2 x6) = x3 (ap x4 x6))
Known pack_u_0_eq2pack_u_0_eq2 : ∀ x0 . ∀ x1 : ι → ι . x0 = ap (pack_u x0 x1) 0
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Param SingSing : ιι
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known eq_1_Sing0eq_1_Sing0 : 1 = Sing 0
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Theorem eea6d.. : MetaCat_terminal_p struct_u UnaryFuncHom struct_id struct_comp (pack_u 1 (λ x0 . 0)) (λ x0 . lam (ap x0 0) (λ x1 . 0)) (proof)
Definition MetaCat_nno_pnno_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . λ x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (MetaCat_terminal_p x0 x1 x2 x3 x4 x5) (x0 x6)) (x1 x4 x6 x7)) (x1 x6 x6 x8)) (∀ x10 x11 x12 . x0 x10x1 x4 x10 x11x1 x10 x10 x12and (and (and (x1 x6 x10 (x9 x10 x11 x12)) (x3 x4 x6 x10 (x9 x10 x11 x12) x7 = x11)) (x3 x6 x6 x10 (x9 x10 x11 x12) x8 = x3 x6 x10 x10 x12 (x9 x10 x11 x12))) (∀ x13 . x1 x6 x10 x13x3 x4 x6 x10 x13 x7 = x11x3 x6 x6 x10 x13 x8 = x3 x6 x10 x10 x12 x13x13 = x9 x10 x11 x12))
Param omegaomega : ι
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Known and5Iand5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4
Param nat_pnat_p : ιο
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_0nat_0 : nat_p 0
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Theorem 12c76..MetaCat_struct_u_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p struct_u UnaryFuncHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param unpack_u_ounpack_u_o : ι(ι(ιι) → ο) → ο
Known unpack_u_o_equnpack_u_o_eq : ∀ x0 : ι → (ι → ι) → ο . ∀ x1 . ∀ x2 : ι → ι . (∀ x3 : ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x3 = x0 x1 x2)unpack_u_o (pack_u x1 x2) x0 = x0 x1 x2
Theorem 38b9f.. : ∀ x0 : ι → (ι → ι) → ο . (∀ x1 . ∀ x2 : ι → ι . (∀ x3 . x3x1x2 x3x1)∀ x3 : ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x3 = x0 x1 x2)x0 1 (λ x1 . 0)MetaCat_terminal_p (λ x1 . and (struct_u x1) (unpack_u_o x1 x0)) UnaryFuncHom struct_id struct_comp (pack_u 1 (λ x1 . 0)) (λ x1 . lam (ap x1 0) (λ x2 . 0)) (proof)
Theorem 0b183.. : ∀ x0 : ι → (ι → ι) → ο . (∀ x1 . ∀ x2 : ι → ι . (∀ x3 . x3x1x2 x3x1)∀ x3 : ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x3 = x0 x1 x2)x0 1 (λ x1 . 0)x0 omega (λ x1 . x1)MetaCat_nno_p (λ x1 . and (struct_u x1) (unpack_u_o x1 x0)) UnaryFuncHom struct_id struct_comp (pack_u 1 (λ x1 . 0)) (λ x1 . lam (ap x1 0) (λ x2 . 0)) (pack_u omega (λ x1 . x1)) (lam 1 (λ x1 . 0)) (lam omega ordsucc) (λ x1 x2 x3 . lam omega (nat_primrec (ap x2 0) (λ x4 . ap x3))) (proof)
Known prop_ext_2prop_ext_2 : ∀ x0 x1 : ο . (x0x1)(x1x0)x0 = x1
Theorem 414ab.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0x1 x2x0)∀ x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)(∀ x4 . x4x0x2 (x2 x4) = x2 x4) = ∀ x4 . x4x0x1 (x1 x4) = x1 x4 (proof)
Definition 9f253..struct_u_idem := λ x0 . and (struct_u x0) (unpack_u_o x0 (λ x1 . λ x2 : ι → ι . ∀ x3 . x3x1x2 (x2 x3) = x2 x3))
Theorem cae12..MetaCat_struct_u_idem_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p 9f253.. UnaryFuncHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Theorem 8d752..MetaCat_struct_u_idem_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p 9f253.. UnaryFuncHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition SelfInjectionstruct_u_inj := λ x0 . and (struct_u x0) (unpack_u_o x0 (λ x1 . inj x1 x1))
Theorem fc83d..MetaCat_struct_u_inj_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p SelfInjection UnaryFuncHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition bijbij := λ x0 x1 . λ x2 : ι → ι . and (and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)) (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)
Definition Permutationstruct_u_bij := λ x0 . and (struct_u x0) (unpack_u_o x0 (λ x1 . bij x1 x1))
Known bij_idbij_id : ∀ x0 . bij x0 x0 (λ x1 . x1)
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Theorem cdd84..MetaCat_struct_u_bij_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p Permutation UnaryFuncHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)