Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrK52..
/
39e82..
PURNd..
/
17f93..
vout
PrK52..
/
5671d..
0.10 bars
TMdNa..
/
f5f76..
ownership of
6d5d2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMV4W..
/
3427c..
ownership of
e7f17..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMU6..
/
7cec9..
ownership of
80809..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHP4..
/
c0dd7..
ownership of
e47d0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVby..
/
7bacc..
ownership of
8c5ac..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbG7..
/
1b5ff..
ownership of
a6251..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK1T..
/
f3f19..
ownership of
a570b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZwn..
/
c0d68..
ownership of
beffd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSrf..
/
2b464..
ownership of
f4afe..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNgu..
/
4a463..
ownership of
5d0e5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSSS..
/
032d7..
ownership of
d3800..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZnr..
/
54a9d..
ownership of
2be94..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUc2..
/
0ca6b..
ownership of
3e80b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbLT..
/
3d37e..
ownership of
61015..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLhM..
/
b3092..
ownership of
d57f9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRaM..
/
32fff..
ownership of
72bb8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKmB..
/
186ad..
ownership of
15dd0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKXj..
/
2dfa6..
ownership of
08b23..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVQC..
/
e39cf..
ownership of
73655..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcw1..
/
45fcc..
ownership of
83ad0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWWi..
/
698c1..
ownership of
56f30..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUgv..
/
217ff..
ownership of
23896..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHqz..
/
7c9f6..
ownership of
2a094..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLzC..
/
a7ee7..
ownership of
72656..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKhH..
/
3ff1c..
ownership of
ca6a0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTU5..
/
a4a30..
ownership of
63a59..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJex..
/
d2d77..
ownership of
f7fac..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPfm..
/
3fe83..
ownership of
23e5d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUDh..
/
4d72e..
ownership of
88cc2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKyt..
/
33f66..
ownership of
47ef2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPYX..
/
81f62..
ownership of
e1353..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZTV..
/
6b2da..
ownership of
f25a0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK8K..
/
e86a6..
ownership of
12759..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSo6..
/
9d8ee..
ownership of
93e66..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFDw..
/
35dbf..
ownership of
4c688..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMV1h..
/
92836..
ownership of
d45f3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUdJh..
/
e05ee..
doc published by
PrCmT..
Known
df_coda__df_homa__df_arw__df_ida__df_coa__df_setc__df_catc__df_estrc__df_xpc__df_1stf__df_2ndf__df_prf__df_evlf__df_curf__df_uncf__df_diag__df_hof__df_yon
:
∀ x0 : ο .
(
wceq
ccoda
(
ccom
c2nd
c1st
)
⟶
wceq
choma
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
cmpt
(
λ x2 .
cxp
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cxp
(
csn
(
cv
x2
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
chom
)
)
)
)
)
⟶
wceq
carw
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
cuni
(
crn
(
cfv
(
cv
x1
)
choma
)
)
)
)
⟶
wceq
cida
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
cotp
(
cv
x2
)
(
cv
x2
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ccid
)
)
)
)
)
⟶
wceq
ccoa
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
carw
)
(
λ x2 x3 .
crab
(
λ x4 .
wceq
(
cfv
(
cv
x4
)
ccoda
)
(
cfv
(
cv
x2
)
cdoma
)
)
(
λ x4 .
cfv
(
cv
x1
)
carw
)
)
(
λ x2 x3 .
cotp
(
cfv
(
cv
x3
)
cdoma
)
(
cfv
(
cv
x2
)
ccoda
)
(
co
(
cfv
(
cv
x2
)
c2nd
)
(
cfv
(
cv
x3
)
c2nd
)
(
co
(
cop
(
cfv
(
cv
x3
)
cdoma
)
(
cfv
(
cv
x2
)
cdoma
)
)
(
cfv
(
cv
x2
)
ccoda
)
(
cfv
(
cv
x1
)
cco
)
)
)
)
)
)
⟶
wceq
csetc
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
chom
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
co
(
cv
x3
)
(
cv
x2
)
cmap
)
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x2 x3 .
cxp
(
cv
x1
)
(
cv
x1
)
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cmpt2
(
λ x4 x5 .
co
(
cv
x3
)
(
cfv
(
cv
x2
)
c2nd
)
cmap
)
(
λ x4 x5 .
co
(
cfv
(
cv
x2
)
c2nd
)
(
cfv
(
cv
x2
)
c1st
)
cmap
)
(
λ x4 x5 .
ccom
(
cv
x4
)
(
cv
x5
)
)
)
)
)
)
)
⟶
wceq
ccatc
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
cin
(
cv
x1
)
ccat
)
(
λ x2 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x2
)
)
(
cop
(
cfv
cnx
chom
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
co
(
cv
x3
)
(
cv
x4
)
cfunc
)
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x3 x4 .
cxp
(
cv
x2
)
(
cv
x2
)
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cmpt2
(
λ x5 x6 .
co
(
cfv
(
cv
x3
)
c2nd
)
(
cv
x4
)
cfunc
)
(
λ x5 x6 .
cfv
(
cv
x3
)
cfunc
)
(
λ x5 x6 .
co
(
cv
x5
)
(
cv
x6
)
ccofu
)
)
)
)
)
)
)
⟶
wceq
cestrc
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
chom
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
co
(
cfv
(
cv
x3
)
cbs
)
(
cfv
(
cv
x2
)
cbs
)
cmap
)
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x2 x3 .
cxp
(
cv
x1
)
(
cv
x1
)
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cmpt2
(
λ x4 x5 .
co
(
cfv
(
cv
x3
)
cbs
)
(
cfv
(
cfv
(
cv
x2
)
c2nd
)
cbs
)
cmap
)
(
λ x4 x5 .
co
(
cfv
(
cfv
(
cv
x2
)
c2nd
)
cbs
)
(
cfv
(
cfv
(
cv
x2
)
c1st
)
cbs
)
cmap
)
(
λ x4 x5 .
ccom
(
cv
x4
)
(
cv
x5
)
)
)
)
)
)
)
⟶
wceq
cxpc
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
cxp
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x2
)
cbs
)
)
(
λ x3 .
csb
(
cmpt2
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cxp
(
co
(
cfv
(
cv
x4
)
c1st
)
(
cfv
(
cv
x5
)
c1st
)
(
cfv
(
cv
x1
)
chom
)
)
(
co
(
cfv
(
cv
x4
)
c2nd
)
(
cfv
(
cv
x5
)
c2nd
)
(
cfv
(
cv
x2
)
chom
)
)
)
)
(
λ x4 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x3
)
)
(
cop
(
cfv
cnx
chom
)
(
cv
x4
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x5 x6 .
cxp
(
cv
x3
)
(
cv
x3
)
)
(
λ x5 x6 .
cv
x3
)
(
λ x5 x6 .
cmpt2
(
λ x7 x8 .
co
(
cfv
(
cv
x5
)
c2nd
)
(
cv
x6
)
(
cv
x4
)
)
(
λ x7 x8 .
cfv
(
cv
x5
)
(
cv
x4
)
)
(
λ x7 x8 .
cop
(
co
(
cfv
(
cv
x7
)
c1st
)
(
cfv
(
cv
x8
)
c1st
)
(
co
(
cop
(
cfv
(
cfv
(
cv
x5
)
c1st
)
c1st
)
(
cfv
(
cfv
(
cv
x5
)
c2nd
)
c1st
)
)
(
cfv
(
cv
x6
)
c1st
)
(
cfv
(
cv
x1
)
cco
)
)
)
(
co
(
cfv
(
cv
x7
)
c2nd
)
(
cfv
(
cv
x8
)
c2nd
)
(
co
(
cop
(
cfv
(
cfv
(
cv
x5
)
c1st
)
c2nd
)
(
cfv
(
cfv
(
cv
x5
)
c2nd
)
c2nd
)
)
(
cfv
(
cv
x6
)
c2nd
)
(
cfv
(
cv
x2
)
cco
)
)
)
)
)
)
)
)
)
)
)
⟶
wceq
c1stf
(
cmpt2
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
csb
(
cxp
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x2
)
cbs
)
)
(
λ x3 .
cop
(
cres
c1st
(
cv
x3
)
)
(
cmpt2
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cres
c1st
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cxpc
)
chom
)
)
)
)
)
)
)
⟶
wceq
c2ndf
(
cmpt2
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
csb
(
cxp
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x2
)
cbs
)
)
(
λ x3 .
cop
(
cres
c2nd
(
cv
x3
)
)
(
cmpt2
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cres
c2nd
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cxpc
)
chom
)
)
)
)
)
)
)
⟶
wceq
cprf
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
cdm
(
cfv
(
cv
x1
)
c1st
)
)
(
λ x3 .
cop
(
cmpt
(
λ x4 .
cv
x3
)
(
λ x4 .
cop
(
cfv
(
cv
x4
)
(
cfv
(
cv
x1
)
c1st
)
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
c1st
)
)
)
)
(
cmpt2
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cmpt
(
λ x6 .
cdm
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
c2nd
)
)
)
(
λ x6 .
cop
(
cfv
(
cv
x6
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
c2nd
)
)
)
(
cfv
(
cv
x6
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x2
)
c2nd
)
)
)
)
)
)
)
)
)
⟶
wceq
cevlf
(
cmpt2
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
cop
(
cmpt2
(
λ x3 x4 .
co
(
cv
x1
)
(
cv
x2
)
cfunc
)
(
λ x3 x4 .
cfv
(
cv
x1
)
cbs
)
(
λ x3 x4 .
cfv
(
cv
x4
)
(
cfv
(
cv
x3
)
c1st
)
)
)
(
cmpt2
(
λ x3 x4 .
cxp
(
co
(
cv
x1
)
(
cv
x2
)
cfunc
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 x4 .
cxp
(
co
(
cv
x1
)
(
cv
x2
)
cfunc
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 x4 .
csb
(
cfv
(
cv
x3
)
c1st
)
(
λ x5 .
csb
(
cfv
(
cv
x4
)
c1st
)
(
λ x6 .
cmpt2
(
λ x7 x8 .
co
(
cv
x5
)
(
cv
x6
)
(
co
(
cv
x1
)
(
cv
x2
)
cnat
)
)
(
λ x7 x8 .
co
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x4
)
c2nd
)
(
cfv
(
cv
x1
)
chom
)
)
(
λ x7 x8 .
co
(
cfv
(
cfv
(
cv
x4
)
c2nd
)
(
cv
x7
)
)
(
cfv
(
cv
x8
)
(
co
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x4
)
c2nd
)
(
cfv
(
cv
x5
)
c2nd
)
)
)
(
co
(
cop
(
cfv
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x5
)
c1st
)
)
(
cfv
(
cfv
(
cv
x4
)
c2nd
)
(
cfv
(
cv
x5
)
c1st
)
)
)
(
cfv
(
cfv
(
cv
x4
)
c2nd
)
(
cfv
(
cv
x6
)
c1st
)
)
(
cfv
(
cv
x2
)
cco
)
)
)
)
)
)
)
)
)
⟶
wceq
ccurf
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
cfv
(
cv
x1
)
c1st
)
(
λ x3 .
csb
(
cfv
(
cv
x1
)
c2nd
)
(
λ x4 .
cop
(
cmpt
(
λ x5 .
cfv
(
cv
x3
)
cbs
)
(
λ x5 .
cop
(
cmpt
(
λ x6 .
cfv
(
cv
x4
)
cbs
)
(
λ x6 .
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x2
)
c1st
)
)
)
(
cmpt2
(
λ x6 x7 .
cfv
(
cv
x4
)
cbs
)
(
λ x6 x7 .
cfv
(
cv
x4
)
cbs
)
(
λ x6 x7 .
cmpt
(
λ x8 .
co
(
cv
x6
)
(
cv
x7
)
(
cfv
(
cv
x4
)
chom
)
)
(
λ x8 .
co
(
cfv
(
cv
x5
)
(
cfv
(
cv
x3
)
ccid
)
)
(
cv
x8
)
(
co
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cop
(
cv
x5
)
(
cv
x7
)
)
(
cfv
(
cv
x2
)
c2nd
)
)
)
)
)
)
)
(
cmpt2
(
λ x5 x6 .
cfv
(
cv
x3
)
cbs
)
(
λ x5 x6 .
cfv
(
cv
x3
)
cbs
)
(
λ x5 x6 .
cmpt
(
λ x7 .
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x3
)
chom
)
)
(
λ x7 .
cmpt
(
λ x8 .
cfv
(
cv
x4
)
cbs
)
(
λ x8 .
co
(
cv
x7
)
(
cfv
(
cv
x8
)
(
cfv
(
cv
x4
)
ccid
)
)
(
co
(
cop
(
cv
x5
)
(
cv
x8
)
)
(
cop
(
cv
x6
)
(
cv
x8
)
)
(
cfv
(
cv
x2
)
c2nd
)
)
)
)
)
)
)
)
)
)
⟶
wceq
cuncf
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
co
(
cfv
c1
(
cv
x1
)
)
(
cfv
c2
(
cv
x1
)
)
cevlf
)
(
co
(
co
(
cv
x2
)
(
co
(
cfv
cc0
(
cv
x1
)
)
(
cfv
c1
(
cv
x1
)
)
c1stf
)
ccofu
)
(
co
(
cfv
cc0
(
cv
x1
)
)
(
cfv
c1
(
cv
x1
)
)
c2ndf
)
cprf
)
ccofu
)
)
⟶
wceq
cdiag
(
cmpt2
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
ccat
)
(
λ x1 x2 .
co
(
cop
(
cv
x1
)
(
cv
x2
)
)
(
co
(
cv
x1
)
(
cv
x2
)
c1stf
)
ccurf
)
)
⟶
wceq
chof
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
cop
(
cfv
(
cv
x1
)
chomf
)
(
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
cmpt2
(
λ x3 x4 .
cxp
(
cv
x2
)
(
cv
x2
)
)
(
λ x3 x4 .
cxp
(
cv
x2
)
(
cv
x2
)
)
(
λ x3 x4 .
cmpt2
(
λ x5 x6 .
co
(
cfv
(
cv
x4
)
c1st
)
(
cfv
(
cv
x3
)
c1st
)
(
cfv
(
cv
x1
)
chom
)
)
(
λ x5 x6 .
co
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x4
)
c2nd
)
(
cfv
(
cv
x1
)
chom
)
)
(
λ x5 x6 .
cmpt
(
λ x7 .
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
chom
)
)
(
λ x7 .
co
(
co
(
cv
x6
)
(
cv
x7
)
(
co
(
cv
x3
)
(
cfv
(
cv
x4
)
c2nd
)
(
cfv
(
cv
x1
)
cco
)
)
)
(
cv
x5
)
(
co
(
cop
(
cfv
(
cv
x4
)
c1st
)
(
cfv
(
cv
x3
)
c1st
)
)
(
cfv
(
cv
x4
)
c2nd
)
(
cfv
(
cv
x1
)
cco
)
)
)
)
)
)
)
)
)
⟶
wceq
cyon
(
cmpt
(
λ x1 .
ccat
)
(
λ x1 .
co
(
cop
(
cv
x1
)
(
cfv
(
cv
x1
)
coppc
)
)
(
cfv
(
cfv
(
cv
x1
)
coppc
)
chof
)
ccurf
)
)
⟶
x0
)
⟶
x0
Theorem
df_coda
:
wceq
ccoda
(
ccom
c2nd
c1st
)
(proof)
Theorem
df_homa
:
wceq
choma
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
cmpt
(
λ x1 .
cxp
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
cxp
(
csn
(
cv
x1
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
chom
)
)
)
)
)
(proof)
Theorem
df_arw
:
wceq
carw
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
cuni
(
crn
(
cfv
(
cv
x0
)
choma
)
)
)
)
(proof)
Theorem
df_ida
:
wceq
cida
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
cotp
(
cv
x1
)
(
cv
x1
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ccid
)
)
)
)
)
(proof)
Theorem
df_coa
:
wceq
ccoa
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
carw
)
(
λ x1 x2 .
crab
(
λ x3 .
wceq
(
cfv
(
cv
x3
)
ccoda
)
(
cfv
(
cv
x1
)
cdoma
)
)
(
λ x3 .
cfv
(
cv
x0
)
carw
)
)
(
λ x1 x2 .
cotp
(
cfv
(
cv
x2
)
cdoma
)
(
cfv
(
cv
x1
)
ccoda
)
(
co
(
cfv
(
cv
x1
)
c2nd
)
(
cfv
(
cv
x2
)
c2nd
)
(
co
(
cop
(
cfv
(
cv
x2
)
cdoma
)
(
cfv
(
cv
x1
)
cdoma
)
)
(
cfv
(
cv
x1
)
ccoda
)
(
cfv
(
cv
x0
)
cco
)
)
)
)
)
)
(proof)
Theorem
df_setc
:
wceq
csetc
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x0
)
)
(
cop
(
cfv
cnx
chom
)
(
cmpt2
(
λ x1 x2 .
cv
x0
)
(
λ x1 x2 .
cv
x0
)
(
λ x1 x2 .
co
(
cv
x2
)
(
cv
x1
)
cmap
)
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x1 x2 .
cxp
(
cv
x0
)
(
cv
x0
)
)
(
λ x1 x2 .
cv
x0
)
(
λ x1 x2 .
cmpt2
(
λ x3 x4 .
co
(
cv
x2
)
(
cfv
(
cv
x1
)
c2nd
)
cmap
)
(
λ x3 x4 .
co
(
cfv
(
cv
x1
)
c2nd
)
(
cfv
(
cv
x1
)
c1st
)
cmap
)
(
λ x3 x4 .
ccom
(
cv
x3
)
(
cv
x4
)
)
)
)
)
)
)
(proof)
Theorem
df_catc
:
wceq
ccatc
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
cin
(
cv
x0
)
ccat
)
(
λ x1 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
chom
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
co
(
cv
x2
)
(
cv
x3
)
cfunc
)
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x2 x3 .
cxp
(
cv
x1
)
(
cv
x1
)
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cmpt2
(
λ x4 x5 .
co
(
cfv
(
cv
x2
)
c2nd
)
(
cv
x3
)
cfunc
)
(
λ x4 x5 .
cfv
(
cv
x2
)
cfunc
)
(
λ x4 x5 .
co
(
cv
x4
)
(
cv
x5
)
ccofu
)
)
)
)
)
)
)
(proof)
Theorem
df_estrc
:
wceq
cestrc
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x0
)
)
(
cop
(
cfv
cnx
chom
)
(
cmpt2
(
λ x1 x2 .
cv
x0
)
(
λ x1 x2 .
cv
x0
)
(
λ x1 x2 .
co
(
cfv
(
cv
x2
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
cmap
)
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x1 x2 .
cxp
(
cv
x0
)
(
cv
x0
)
)
(
λ x1 x2 .
cv
x0
)
(
λ x1 x2 .
cmpt2
(
λ x3 x4 .
co
(
cfv
(
cv
x2
)
cbs
)
(
cfv
(
cfv
(
cv
x1
)
c2nd
)
cbs
)
cmap
)
(
λ x3 x4 .
co
(
cfv
(
cfv
(
cv
x1
)
c2nd
)
cbs
)
(
cfv
(
cfv
(
cv
x1
)
c1st
)
cbs
)
cmap
)
(
λ x3 x4 .
ccom
(
cv
x3
)
(
cv
x4
)
)
)
)
)
)
)
(proof)
Theorem
df_xpc
:
wceq
cxpc
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
cxp
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
csb
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cxp
(
co
(
cfv
(
cv
x3
)
c1st
)
(
cfv
(
cv
x4
)
c1st
)
(
cfv
(
cv
x0
)
chom
)
)
(
co
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x4
)
c2nd
)
(
cfv
(
cv
x1
)
chom
)
)
)
)
(
λ x3 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x2
)
)
(
cop
(
cfv
cnx
chom
)
(
cv
x3
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x4 x5 .
cxp
(
cv
x2
)
(
cv
x2
)
)
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
cmpt2
(
λ x6 x7 .
co
(
cfv
(
cv
x4
)
c2nd
)
(
cv
x5
)
(
cv
x3
)
)
(
λ x6 x7 .
cfv
(
cv
x4
)
(
cv
x3
)
)
(
λ x6 x7 .
cop
(
co
(
cfv
(
cv
x6
)
c1st
)
(
cfv
(
cv
x7
)
c1st
)
(
co
(
cop
(
cfv
(
cfv
(
cv
x4
)
c1st
)
c1st
)
(
cfv
(
cfv
(
cv
x4
)
c2nd
)
c1st
)
)
(
cfv
(
cv
x5
)
c1st
)
(
cfv
(
cv
x0
)
cco
)
)
)
(
co
(
cfv
(
cv
x6
)
c2nd
)
(
cfv
(
cv
x7
)
c2nd
)
(
co
(
cop
(
cfv
(
cfv
(
cv
x4
)
c1st
)
c2nd
)
(
cfv
(
cfv
(
cv
x4
)
c2nd
)
c2nd
)
)
(
cfv
(
cv
x5
)
c2nd
)
(
cfv
(
cv
x1
)
cco
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
df_1stf
:
wceq
c1stf
(
cmpt2
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
csb
(
cxp
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cop
(
cres
c1st
(
cv
x2
)
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cres
c1st
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cxpc
)
chom
)
)
)
)
)
)
)
(proof)
Theorem
df_2ndf
:
wceq
c2ndf
(
cmpt2
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
csb
(
cxp
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
cop
(
cres
c2nd
(
cv
x2
)
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cres
c2nd
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cxpc
)
chom
)
)
)
)
)
)
)
(proof)
Theorem
df_prf
:
wceq
cprf
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
cdm
(
cfv
(
cv
x0
)
c1st
)
)
(
λ x2 .
cop
(
cmpt
(
λ x3 .
cv
x2
)
(
λ x3 .
cop
(
cfv
(
cv
x3
)
(
cfv
(
cv
x0
)
c1st
)
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
c1st
)
)
)
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cmpt
(
λ x5 .
cdm
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
c2nd
)
)
)
(
λ x5 .
cop
(
cfv
(
cv
x5
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
c2nd
)
)
)
(
cfv
(
cv
x5
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
c2nd
)
)
)
)
)
)
)
)
)
(proof)
Theorem
df_evlf
:
wceq
cevlf
(
cmpt2
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
cop
(
cmpt2
(
λ x2 x3 .
co
(
cv
x0
)
(
cv
x1
)
cfunc
)
(
λ x2 x3 .
cfv
(
cv
x0
)
cbs
)
(
λ x2 x3 .
cfv
(
cv
x3
)
(
cfv
(
cv
x2
)
c1st
)
)
)
(
cmpt2
(
λ x2 x3 .
cxp
(
co
(
cv
x0
)
(
cv
x1
)
cfunc
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 x3 .
cxp
(
co
(
cv
x0
)
(
cv
x1
)
cfunc
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 x3 .
csb
(
cfv
(
cv
x2
)
c1st
)
(
λ x4 .
csb
(
cfv
(
cv
x3
)
c1st
)
(
λ x5 .
cmpt2
(
λ x6 x7 .
co
(
cv
x4
)
(
cv
x5
)
(
co
(
cv
x0
)
(
cv
x1
)
cnat
)
)
(
λ x6 x7 .
co
(
cfv
(
cv
x2
)
c2nd
)
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x0
)
chom
)
)
(
λ x6 x7 .
co
(
cfv
(
cfv
(
cv
x3
)
c2nd
)
(
cv
x6
)
)
(
cfv
(
cv
x7
)
(
co
(
cfv
(
cv
x2
)
c2nd
)
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x4
)
c2nd
)
)
)
(
co
(
cop
(
cfv
(
cfv
(
cv
x2
)
c2nd
)
(
cfv
(
cv
x4
)
c1st
)
)
(
cfv
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x4
)
c1st
)
)
)
(
cfv
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x5
)
c1st
)
)
(
cfv
(
cv
x1
)
cco
)
)
)
)
)
)
)
)
)
(proof)
Theorem
df_curf
:
wceq
ccurf
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
cfv
(
cv
x0
)
c1st
)
(
λ x2 .
csb
(
cfv
(
cv
x0
)
c2nd
)
(
λ x3 .
cop
(
cmpt
(
λ x4 .
cfv
(
cv
x2
)
cbs
)
(
λ x4 .
cop
(
cmpt
(
λ x5 .
cfv
(
cv
x3
)
cbs
)
(
λ x5 .
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
c1st
)
)
)
(
cmpt2
(
λ x5 x6 .
cfv
(
cv
x3
)
cbs
)
(
λ x5 x6 .
cfv
(
cv
x3
)
cbs
)
(
λ x5 x6 .
cmpt
(
λ x7 .
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x3
)
chom
)
)
(
λ x7 .
co
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
ccid
)
)
(
cv
x7
)
(
co
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x4
)
(
cv
x6
)
)
(
cfv
(
cv
x1
)
c2nd
)
)
)
)
)
)
)
(
cmpt2
(
λ x4 x5 .
cfv
(
cv
x2
)
cbs
)
(
λ x4 x5 .
cfv
(
cv
x2
)
cbs
)
(
λ x4 x5 .
cmpt
(
λ x6 .
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x2
)
chom
)
)
(
λ x6 .
cmpt
(
λ x7 .
cfv
(
cv
x3
)
cbs
)
(
λ x7 .
co
(
cv
x6
)
(
cfv
(
cv
x7
)
(
cfv
(
cv
x3
)
ccid
)
)
(
co
(
cop
(
cv
x4
)
(
cv
x7
)
)
(
cop
(
cv
x5
)
(
cv
x7
)
)
(
cfv
(
cv
x1
)
c2nd
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
df_uncf
:
wceq
cuncf
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
co
(
cfv
c1
(
cv
x0
)
)
(
cfv
c2
(
cv
x0
)
)
cevlf
)
(
co
(
co
(
cv
x1
)
(
co
(
cfv
cc0
(
cv
x0
)
)
(
cfv
c1
(
cv
x0
)
)
c1stf
)
ccofu
)
(
co
(
cfv
cc0
(
cv
x0
)
)
(
cfv
c1
(
cv
x0
)
)
c2ndf
)
cprf
)
ccofu
)
)
(proof)
Theorem
df_diag
:
wceq
cdiag
(
cmpt2
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
ccat
)
(
λ x0 x1 .
co
(
cop
(
cv
x0
)
(
cv
x1
)
)
(
co
(
cv
x0
)
(
cv
x1
)
c1stf
)
ccurf
)
)
(proof)
Theorem
df_hof
:
wceq
chof
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
cop
(
cfv
(
cv
x0
)
chomf
)
(
csb
(
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cxp
(
cv
x1
)
(
cv
x1
)
)
(
λ x2 x3 .
cxp
(
cv
x1
)
(
cv
x1
)
)
(
λ x2 x3 .
cmpt2
(
λ x4 x5 .
co
(
cfv
(
cv
x3
)
c1st
)
(
cfv
(
cv
x2
)
c1st
)
(
cfv
(
cv
x0
)
chom
)
)
(
λ x4 x5 .
co
(
cfv
(
cv
x2
)
c2nd
)
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x0
)
chom
)
)
(
λ x4 x5 .
cmpt
(
λ x6 .
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
chom
)
)
(
λ x6 .
co
(
co
(
cv
x5
)
(
cv
x6
)
(
co
(
cv
x2
)
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x0
)
cco
)
)
)
(
cv
x4
)
(
co
(
cop
(
cfv
(
cv
x3
)
c1st
)
(
cfv
(
cv
x2
)
c1st
)
)
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x0
)
cco
)
)
)
)
)
)
)
)
)
(proof)
Theorem
df_yon
:
wceq
cyon
(
cmpt
(
λ x0 .
ccat
)
(
λ x0 .
co
(
cop
(
cv
x0
)
(
cfv
(
cv
x0
)
coppc
)
)
(
cfv
(
cfv
(
cv
x0
)
coppc
)
chof
)
ccurf
)
)
(proof)