Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrRL5..
/
17f74..
PUWSC..
/
714e0..
vout
PrRL5..
/
d252b..
1.98 bars
TMXbF..
/
f3381..
ownership of
7ef92..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMGc7..
/
80901..
ownership of
189d8..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMSAR..
/
92ca6..
ownership of
8e8eb..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMTWb..
/
12296..
ownership of
0fc8a..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMFJf..
/
33914..
ownership of
dbc2f..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMJc2..
/
73ac2..
ownership of
0ce55..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMWAE..
/
4f6c3..
ownership of
0362c..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMdBw..
/
d871d..
ownership of
b23eb..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMVpX..
/
46c87..
ownership of
17160..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMRhc..
/
af29a..
ownership of
956a8..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMa1w..
/
5207d..
ownership of
463b8..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMZZh..
/
ec602..
ownership of
6c4b7..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMP6H..
/
c94a6..
ownership of
49872..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMbLq..
/
ede6d..
ownership of
9f139..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
PUZ6D..
/
79c58..
doc published by
PrQUS..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
SNoS_
SNoS_
:
ι
→
ι
Param
omega
omega
:
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
SNo
SNo
:
ι
→
ο
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Definition
SNoCutP
SNoCutP
:=
λ x0 x1 .
and
(
and
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
(
∀ x2 .
x2
∈
x1
⟶
SNo
x2
)
)
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
SNoLt
x2
x3
)
Param
SNoCut
SNoCut
:
ι
→
ι
→
ι
Param
real
real
:
ι
Param
SNoLev
SNoLev
:
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
famunion
famunion
:
ι
→
(
ι
→
ι
) →
ι
Param
SNoEq_
SNoEq_
:
ι
→
ι
→
ι
→
ο
Known
SNoCutP_SNoCut_impred
SNoCutP_SNoCut_impred
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
∀ x2 : ο .
(
SNo
(
SNoCut
x0
x1
)
⟶
SNoLev
(
SNoCut
x0
x1
)
∈
ordsucc
(
binunion
(
famunion
x0
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
(
famunion
x1
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
SNoLt
x3
(
SNoCut
x0
x1
)
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
SNoLt
(
SNoCut
x0
x1
)
x3
)
⟶
(
∀ x3 .
SNo
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
SNoLt
x4
x3
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
SNoLt
x3
x4
)
⟶
and
(
SNoLev
(
SNoCut
x0
x1
)
⊆
SNoLev
x3
)
(
SNoEq_
(
SNoLev
(
SNoCut
x0
x1
)
)
(
SNoCut
x0
x1
)
x3
)
)
⟶
x2
)
⟶
x2
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Definition
ordinal
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
x1
∈
x0
⟶
TransSet
x1
)
Known
ordinal_ordsucc_In_Subq
ordinal_ordsucc_In_Subq
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
⊆
x0
Known
ordsucc_omega_ordinal
ordsucc_omega_ordinal
:
ordinal
(
ordsucc
omega
)
Known
ordinal_In_Or_Subq
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
Known
ordinal_binunion
ordinal_binunion
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
binunion
x0
x1
)
Known
ordinal_famunion
ordinal_famunion
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
ordinal
(
x1
x2
)
)
⟶
ordinal
(
famunion
x0
x1
)
Known
ordinal_ordsucc
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
famunionE_impred
famunionE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
∈
x1
x4
⟶
x3
)
⟶
x3
Param
SNo_
SNo_
:
ι
→
ι
→
ο
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Known
omega_ordinal
omega_ordinal
:
ordinal
omega
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
SNoS_omega_real
SNoS_omega_real
:
SNoS_
omega
⊆
real
Known
SNoS_I
SNoS_I
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 .
x2
∈
x0
⟶
SNo_
x2
x1
⟶
x1
∈
SNoS_
x0
Known
SNoLev_
SNoLev_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
SNoLev
x0
)
x0
Param
minus_SNo
minus_SNo
:
ι
→
ι
Param
abs_SNo
abs_SNo
:
ι
→
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
eps_
eps_
:
ι
→
ι
Known
real_I
real_I
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
(
x0
=
omega
⟶
∀ x1 : ο .
x1
)
⟶
(
x0
=
minus_SNo
omega
⟶
∀ x1 : ο .
x1
)
⟶
(
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
)
⟶
x0
∈
real
Known
Empty_eq
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
ordinal_SNoLev_max
ordinal_SNoLev_max
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
x0
⟶
SNoLt
x1
x0
Known
minus_SNo_Lt_contra1
minus_SNo_Lt_contra1
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
(
minus_SNo
x0
)
x1
⟶
SNoLt
(
minus_SNo
x1
)
x0
Known
SNo_omega
SNo_omega
:
SNo
omega
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
minus_SNo_Lev
minus_SNo_Lev
:
∀ x0 .
SNo
x0
⟶
SNoLev
(
minus_SNo
x0
)
=
SNoLev
x0
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Known
SNoLtLe_or
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
Known
add_SNo_SNoS_omega
add_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
add_SNo
x0
x1
∈
SNoS_
omega
Known
minus_SNo_SNoS_omega
minus_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
minus_SNo
x0
∈
SNoS_
omega
Param
nat_p
nat_p
:
ι
→
ο
Known
SNo_pos_eps_Lt
SNo_pos_eps_Lt
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
SNoS_
(
ordsucc
x0
)
⟶
SNoLt
0
x1
⟶
SNoLt
(
eps_
x0
)
x1
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
SNoLt_minus_pos
SNoLt_minus_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
SNoLt
0
(
add_SNo
x1
(
minus_SNo
x0
)
)
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
add_SNo_Lt1
add_SNo_Lt1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
SNo_0
SNo_0
:
SNo
0
Known
SNo_eps_pos
SNo_eps_pos
:
∀ x0 .
x0
∈
omega
⟶
SNoLt
0
(
eps_
x0
)
Known
nonneg_abs_SNo
nonneg_abs_SNo
:
∀ x0 .
SNoLe
0
x0
⟶
abs_SNo
x0
=
x0
Known
abs_SNo_dist_swap
abs_SNo_dist_swap
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
abs_SNo
(
add_SNo
x0
(
minus_SNo
x1
)
)
=
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
SNo_eps_
SNo_eps_
:
∀ x0 .
x0
∈
omega
⟶
SNo
(
eps_
x0
)
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
minus_SNo_Lt_contra
minus_SNo_Lt_contra
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
SNoLt
(
minus_SNo
x1
)
(
minus_SNo
x0
)
Theorem
real_SNoCut_SNoS_omega
real_SNoCut_SNoS_omega
:
∀ x0 .
x0
⊆
SNoS_
omega
⟶
∀ x1 .
x1
⊆
SNoS_
omega
⟶
SNoCutP
x0
x1
⟶
(
x0
=
0
⟶
∀ x2 : ο .
x2
)
⟶
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
SNoLt
x2
x4
)
⟶
x3
)
⟶
x3
)
⟶
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
SNoLt
x4
x2
)
⟶
x3
)
⟶
x3
)
⟶
SNoCut
x0
x1
∈
real
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Known
SNoCut_ext
SNoCut_ext
:
∀ x0 x1 x2 x3 .
SNoCutP
x0
x1
⟶
SNoCutP
x2
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
SNoLt
x4
(
SNoCut
x2
x3
)
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
SNoLt
(
SNoCut
x2
x3
)
x4
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
SNoLt
x4
(
SNoCut
x0
x1
)
)
⟶
(
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
SNoCut
x0
x1
)
x4
)
⟶
SNoCut
x0
x1
=
SNoCut
x2
x3
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
real_E
real_E
:
∀ x0 .
x0
∈
real
⟶
∀ x1 : ο .
(
SNo
x0
⟶
SNoLev
x0
∈
ordsucc
omega
⟶
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
(
minus_SNo
omega
)
x0
⟶
SNoLt
x0
omega
⟶
(
∀ x2 .
x2
∈
SNoS_
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
x0
)
)
)
(
eps_
x3
)
)
⟶
x2
=
x0
)
⟶
(
∀ x2 .
x2
∈
omega
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoS_
omega
)
(
and
(
SNoLt
x4
x0
)
(
SNoLt
x0
(
add_SNo
x4
(
eps_
x2
)
)
)
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Known
famunionI
famunionI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
x1
x2
⟶
x3
∈
famunion
x0
x1
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
SNoS_SNoLev
SNoS_SNoLev
:
∀ x0 .
SNo
x0
⟶
x0
∈
SNoS_
(
ordsucc
(
SNoLev
x0
)
)
Known
SNoLe_ref
SNoLe_ref
:
∀ x0 .
SNoLe
x0
x0
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Known
SNoLtE
SNoLtE
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
SNo
x3
⟶
SNoLev
x3
∈
binintersect
(
SNoLev
x0
)
(
SNoLev
x1
)
⟶
SNoEq_
(
SNoLev
x3
)
x3
x0
⟶
SNoEq_
(
SNoLev
x3
)
x3
x1
⟶
SNoLt
x0
x3
⟶
SNoLt
x3
x1
⟶
nIn
(
SNoLev
x3
)
x0
⟶
SNoLev
x3
∈
x1
⟶
x2
)
⟶
(
SNoLev
x0
∈
SNoLev
x1
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
SNoLev
x0
∈
x1
⟶
x2
)
⟶
(
SNoLev
x1
∈
SNoLev
x0
⟶
SNoEq_
(
SNoLev
x1
)
x0
x1
⟶
nIn
(
SNoLev
x1
)
x0
⟶
x2
)
⟶
x2
Known
binintersectE1
binintersectE1
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x0
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
omega_TransSet
omega_TransSet
:
TransSet
omega
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Theorem
real_SNoCut
real_SNoCut
:
∀ x0 .
x0
⊆
real
⟶
∀ x1 .
x1
⊆
real
⟶
SNoCutP
x0
x1
⟶
(
x0
=
0
⟶
∀ x2 : ο .
x2
)
⟶
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
SNoLt
x2
x4
)
⟶
x3
)
⟶
x3
)
⟶
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
SNoLt
x4
x2
)
⟶
x3
)
⟶
x3
)
⟶
SNoCut
x0
x1
∈
real
(proof)
Param
SNoL
SNoL
:
ι
→
ι
Param
SNoR
SNoR
:
ι
→
ι
Known
add_SNo_eq
add_SNo_eq
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
add_SNo
x0
x1
=
SNoCut
(
binunion
{
add_SNo
x3
x1
|x3 ∈
SNoL
x0
}
(
prim5
(
SNoL
x1
)
(
add_SNo
x0
)
)
)
(
binunion
{
add_SNo
x3
x1
|x3 ∈
SNoR
x0
}
(
prim5
(
SNoR
x1
)
(
add_SNo
x0
)
)
)
Known
add_SNo_SNoCutP
add_SNo_SNoCutP
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoCutP
(
binunion
{
add_SNo
x2
x1
|x2 ∈
SNoL
x0
}
(
prim5
(
SNoL
x1
)
(
add_SNo
x0
)
)
)
(
binunion
{
add_SNo
x2
x1
|x2 ∈
SNoR
x0
}
(
prim5
(
SNoR
x1
)
(
add_SNo
x0
)
)
)
Known
binunionE'
binunionE
:
∀ x0 x1 x2 .
∀ x3 : ο .
(
x2
∈
x0
⟶
x3
)
⟶
(
x2
∈
x1
⟶
x3
)
⟶
x2
∈
binunion
x0
x1
⟶
x3
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
SNoL_E
SNoL_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoL
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
add_SNo_Le1
add_SNo_Le1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
add_SNo_Le2
add_SNo_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SNoR_E
SNoR_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoR
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x2
)
⟶
x2
Known
add_SNo_Lt3
add_SNo_Lt3
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLt
x0
x2
⟶
SNoLt
x1
x3
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
Theorem
add_SNoCutP_lem
add_SNoCutP_lem
:
∀ x0 x1 x2 x3 x4 x5 .
SNoCutP
x0
x1
⟶
SNoCutP
x2
x3
⟶
x4
=
SNoCut
x0
x1
⟶
x5
=
SNoCut
x2
x3
⟶
and
(
SNoCutP
(
binunion
{
add_SNo
x6
x5
|x6 ∈
x0
}
(
prim5
x2
(
add_SNo
x4
)
)
)
(
binunion
{
add_SNo
x6
x5
|x6 ∈
x1
}
(
prim5
x3
(
add_SNo
x4
)
)
)
)
(
add_SNo
x4
x5
=
SNoCut
(
binunion
{
add_SNo
x7
x5
|x7 ∈
x0
}
(
prim5
x2
(
add_SNo
x4
)
)
)
(
binunion
{
add_SNo
x7
x5
|x7 ∈
x1
}
(
prim5
x3
(
add_SNo
x4
)
)
)
)
(proof)
Theorem
add_SNoCutP_gen
add_SNoCutP_gen
:
∀ x0 x1 x2 x3 x4 x5 .
SNoCutP
x0
x1
⟶
SNoCutP
x2
x3
⟶
x4
=
SNoCut
x0
x1
⟶
x5
=
SNoCut
x2
x3
⟶
SNoCutP
(
binunion
{
add_SNo
x6
x5
|x6 ∈
x0
}
(
prim5
x2
(
add_SNo
x4
)
)
)
(
binunion
{
add_SNo
x6
x5
|x6 ∈
x1
}
(
prim5
x3
(
add_SNo
x4
)
)
)
(proof)
Theorem
add_SNoCut_eq
add_SNoCut_eq
:
∀ x0 x1 x2 x3 x4 x5 .
SNoCutP
x0
x1
⟶
SNoCutP
x2
x3
⟶
x4
=
SNoCut
x0
x1
⟶
x5
=
SNoCut
x2
x3
⟶
add_SNo
x4
x5
=
SNoCut
(
binunion
{
add_SNo
x7
x5
|x7 ∈
x0
}
(
prim5
x2
(
add_SNo
x4
)
)
)
(
binunion
{
add_SNo
x7
x5
|x7 ∈
x1
}
(
prim5
x3
(
add_SNo
x4
)
)
)
(proof)
Known
SNoLev_ind
SNoLev_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
SNo
x1
⟶
(
∀ x2 .
x2
∈
SNoS_
(
SNoLev
x1
)
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
SNo
x1
⟶
x0
x1
Known
SNo_eta
SNo_eta
:
∀ x0 .
SNo
x0
⟶
x0
=
SNoCut
(
SNoL
x0
)
(
SNoR
x0
)
Known
SNoCut_Le
SNoCut_Le
:
∀ x0 x1 x2 x3 .
SNoCutP
x0
x1
⟶
SNoCutP
x2
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
SNoLt
x4
(
SNoCut
x2
x3
)
)
⟶
(
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
SNoCut
x0
x1
)
x4
)
⟶
SNoLe
(
SNoCut
x0
x1
)
(
SNoCut
x2
x3
)
Known
SNoCutP_SNoL_SNoR
SNoCutP_SNoL_SNoR
:
∀ x0 .
SNo
x0
⟶
SNoCutP
(
SNoL
x0
)
(
SNoR
x0
)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
SNoLt_trichotomy_or
SNoLt_trichotomy_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
or
(
SNoLt
x0
x1
)
(
x0
=
x1
)
)
(
SNoLt
x1
x0
)
Known
SNoR_SNoS_
SNoR_SNoS_
:
∀ x0 .
SNoR
x0
⊆
SNoS_
(
SNoLev
x0
)
Known
SNoLe_tra
SNoLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLe
x0
x2
Theorem
add_SNo_SNoCut_L_interpolate
add_SNo_SNoCut_L_interpolate
:
∀ x0 x1 x2 x3 x4 x5 .
SNoCutP
x0
x1
⟶
SNoCutP
x2
x3
⟶
x4
=
SNoCut
x0
x1
⟶
x5
=
SNoCut
x2
x3
⟶
∀ x6 .
x6
∈
SNoL
(
add_SNo
x4
x5
)
⟶
or
(
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
SNoLe
x6
(
add_SNo
x8
x5
)
)
⟶
x7
)
⟶
x7
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x2
)
(
SNoLe
x6
(
add_SNo
x4
x8
)
)
⟶
x7
)
⟶
x7
)
(proof)
Known
SNoL_SNoS_
SNoL_SNoS_
:
∀ x0 .
SNoL
x0
⊆
SNoS_
(
SNoLev
x0
)
Theorem
add_SNo_SNoCut_R_interpolate
add_SNo_SNoCut_R_interpolate
:
∀ x0 x1 x2 x3 x4 x5 .
SNoCutP
x0
x1
⟶
SNoCutP
x2
x3
⟶
x4
=
SNoCut
x0
x1
⟶
x5
=
SNoCut
x2
x3
⟶
∀ x6 .
x6
∈
SNoR
(
add_SNo
x4
x5
)
⟶
or
(
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x1
)
(
SNoLe
(
add_SNo
x8
x5
)
x6
)
⟶
x7
)
⟶
x7
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x3
)
(
SNoLe
(
add_SNo
x4
x8
)
x6
)
⟶
x7
)
⟶
x7
)
(proof)