Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrRL5../17f74..
PUWSC../714e0..
vout
PrRL5../d252b.. 1.98 bars
TMXbF../f3381.. ownership of 7ef92.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMGc7../80901.. ownership of 189d8.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMSAR../92ca6.. ownership of 8e8eb.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMTWb../12296.. ownership of 0fc8a.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMFJf../33914.. ownership of dbc2f.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMJc2../73ac2.. ownership of 0ce55.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMWAE../4f6c3.. ownership of 0362c.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMdBw../d871d.. ownership of b23eb.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMVpX../46c87.. ownership of 17160.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMRhc../af29a.. ownership of 956a8.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMa1w../5207d.. ownership of 463b8.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMZZh../ec602.. ownership of 6c4b7.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMP6H../c94a6.. ownership of 49872.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMbLq../ede6d.. ownership of 9f139.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
PUZ6D../79c58.. doc published by PrQUS..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param SNoS_SNoS_ : ιι
Param omegaomega : ι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param SNoSNo : ιο
Param SNoLtSNoLt : ιιο
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param SNoCutSNoCut : ιιι
Param realreal : ι
Param SNoLevSNoLev : ιι
Param ordsuccordsucc : ιι
Param binunionbinunion : ιιι
Param famunionfamunion : ι(ιι) → ι
Param SNoEq_SNoEq_ : ιιιο
Known SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Definition ordinalordinal := λ x0 . and (TransSet x0) (∀ x1 . x1x0TransSet x1)
Known ordinal_ordsucc_In_Subqordinal_ordsucc_In_Subq : ∀ x0 . ordinal x0∀ x1 . x1x0ordsucc x1x0
Known ordsucc_omega_ordinalordsucc_omega_ordinal : ordinal (ordsucc omega)
Known ordinal_In_Or_Subqordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Known ordinal_binunionordinal_binunion : ∀ x0 x1 . ordinal x0ordinal x1ordinal (binunion x0 x1)
Known ordinal_famunionordinal_famunion : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0ordinal (x1 x2))ordinal (famunion x0 x1)
Known ordinal_ordsuccordinal_ordsucc : ∀ x0 . ordinal x0ordinal (ordsucc x0)
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known famunionE_impredfamunionE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2famunion x0 x1∀ x3 : ο . (∀ x4 . x4x0x2x1 x4x3)x3
Param SNo_SNo_ : ιιο
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known omega_ordinalomega_ordinal : ordinal omega
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known SNoS_omega_realSNoS_omega_real : SNoS_ omegareal
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Param minus_SNominus_SNo : ιι
Param abs_SNoabs_SNo : ιι
Param add_SNoadd_SNo : ιιι
Param eps_eps_ : ιι
Known real_Ireal_I : ∀ x0 . x0SNoS_ (ordsucc omega)(x0 = omega∀ x1 : ο . x1)(x0 = minus_SNo omega∀ x1 : ο . x1)(∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)x0real
Known Empty_eqEmpty_eq : ∀ x0 . (∀ x1 . nIn x1 x0)x0 = 0
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known ordinal_SNoLev_maxordinal_SNoLev_max : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1x0SNoLt x1 x0
Known minus_SNo_Lt_contra1minus_SNo_Lt_contra1 : ∀ x0 x1 . SNo x0SNo x1SNoLt (minus_SNo x0) x1SNoLt (minus_SNo x1) x0
Known SNo_omegaSNo_omega : SNo omega
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known minus_SNo_Levminus_SNo_Lev : ∀ x0 . SNo x0SNoLev (minus_SNo x0) = SNoLev x0
Param SNoLeSNoLe : ιιο
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known add_SNo_SNoS_omegaadd_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaadd_SNo x0 x1SNoS_ omega
Known minus_SNo_SNoS_omegaminus_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omegaminus_SNo x0SNoS_ omega
Param nat_pnat_p : ιο
Known SNo_pos_eps_LtSNo_pos_eps_Lt : ∀ x0 . nat_p x0∀ x1 . x1SNoS_ (ordsucc x0)SNoLt 0 x1SNoLt (eps_ x0) x1
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known SNoLt_minus_posSNoLt_minus_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt 0 (add_SNo x1 (minus_SNo x0))
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known add_SNo_Lt1add_SNo_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)
Known SNo_0SNo_0 : SNo 0
Known SNo_eps_posSNo_eps_pos : ∀ x0 . x0omegaSNoLt 0 (eps_ x0)
Known nonneg_abs_SNononneg_abs_SNo : ∀ x0 . SNoLe 0 x0abs_SNo x0 = x0
Known abs_SNo_dist_swapabs_SNo_dist_swap : ∀ x0 x1 . SNo x0SNo x1abs_SNo (add_SNo x0 (minus_SNo x1)) = abs_SNo (add_SNo x1 (minus_SNo x0))
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known minus_SNo_Lt_contraminus_SNo_Lt_contra : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt (minus_SNo x1) (minus_SNo x0)
Theorem real_SNoCut_SNoS_omegareal_SNoCut_SNoS_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaSNoCutP x0 x1(x0 = 0∀ x2 : ο . x2)(x1 = 0∀ x2 : ο . x2)(∀ x2 . x2x0∀ x3 : ο . (∀ x4 . and (x4x0) (SNoLt x2 x4)x3)x3)(∀ x2 . x2x1∀ x3 : ο . (∀ x4 . and (x4x1) (SNoLt x4 x2)x3)x3)SNoCut x0 x1real (proof)
Param SepSep : ι(ιο) → ι
Known SNoCut_extSNoCut_ext : ∀ x0 x1 x2 x3 . SNoCutP x0 x1SNoCutP x2 x3(∀ x4 . x4x0SNoLt x4 (SNoCut x2 x3))(∀ x4 . x4x1SNoLt (SNoCut x2 x3) x4)(∀ x4 . x4x2SNoLt x4 (SNoCut x0 x1))(∀ x4 . x4x3SNoLt (SNoCut x0 x1) x4)SNoCut x0 x1 = SNoCut x2 x3
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known real_Ereal_E : ∀ x0 . x0real∀ x1 : ο . (SNo x0SNoLev x0ordsucc omegax0SNoS_ (ordsucc omega)SNoLt (minus_SNo omega) x0SNoLt x0 omega(∀ x2 . x2SNoS_ omega(∀ x3 . x3omegaSNoLt (abs_SNo (add_SNo x2 (minus_SNo x0))) (eps_ x3))x2 = x0)(∀ x2 . x2omega∀ x3 : ο . (∀ x4 . and (x4SNoS_ omega) (and (SNoLt x4 x0) (SNoLt x0 (add_SNo x4 (eps_ x2))))x3)x3)x1)x1
Known famunionIfamunionI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2x0x3x1 x2x3famunion x0 x1
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known SNoS_SNoLevSNoS_SNoLev : ∀ x0 . SNo x0x0SNoS_ (ordsucc (SNoLev x0))
Known SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Param binintersectbinintersect : ιιι
Known SNoLtESNoLtE : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1∀ x2 : ο . (∀ x3 . SNo x3SNoLev x3binintersect (SNoLev x0) (SNoLev x1)SNoEq_ (SNoLev x3) x3 x0SNoEq_ (SNoLev x3) x3 x1SNoLt x0 x3SNoLt x3 x1nIn (SNoLev x3) x0SNoLev x3x1x2)(SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1x2)(SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0x2)x2
Known binintersectE1binintersectE1 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x0
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known omega_TransSetomega_TransSet : TransSet omega
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Theorem real_SNoCutreal_SNoCut : ∀ x0 . x0real∀ x1 . x1realSNoCutP x0 x1(x0 = 0∀ x2 : ο . x2)(x1 = 0∀ x2 : ο . x2)(∀ x2 . x2x0∀ x3 : ο . (∀ x4 . and (x4x0) (SNoLt x2 x4)x3)x3)(∀ x2 . x2x1∀ x3 : ο . (∀ x4 . and (x4x1) (SNoLt x4 x2)x3)x3)SNoCut x0 x1real (proof)
Param SNoLSNoL : ιι
Param SNoRSNoR : ιι
Known add_SNo_eqadd_SNo_eq : ∀ x0 . SNo x0∀ x1 . SNo x1add_SNo x0 x1 = SNoCut (binunion {add_SNo x3 x1|x3 ∈ SNoL x0} (prim5 (SNoL x1) (add_SNo x0))) (binunion {add_SNo x3 x1|x3 ∈ SNoR x0} (prim5 (SNoR x1) (add_SNo x0)))
Known add_SNo_SNoCutPadd_SNo_SNoCutP : ∀ x0 x1 . SNo x0SNo x1SNoCutP (binunion {add_SNo x2 x1|x2 ∈ SNoL x0} (prim5 (SNoL x1) (add_SNo x0))) (binunion {add_SNo x2 x1|x2 ∈ SNoR x0} (prim5 (SNoR x1) (add_SNo x0)))
Known binunionE'binunionE : ∀ x0 x1 x2 . ∀ x3 : ο . (x2x0x3)(x2x1x3)x2binunion x0 x1x3
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Known add_SNo_Lt3add_SNo_Lt3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt x0 x2SNoLt x1 x3SNoLt (add_SNo x0 x1) (add_SNo x2 x3)
Theorem add_SNoCutP_lemadd_SNoCutP_lem : ∀ x0 x1 x2 x3 x4 x5 . SNoCutP x0 x1SNoCutP x2 x3x4 = SNoCut x0 x1x5 = SNoCut x2 x3and (SNoCutP (binunion {add_SNo x6 x5|x6 ∈ x0} (prim5 x2 (add_SNo x4))) (binunion {add_SNo x6 x5|x6 ∈ x1} (prim5 x3 (add_SNo x4)))) (add_SNo x4 x5 = SNoCut (binunion {add_SNo x7 x5|x7 ∈ x0} (prim5 x2 (add_SNo x4))) (binunion {add_SNo x7 x5|x7 ∈ x1} (prim5 x3 (add_SNo x4)))) (proof)
Theorem add_SNoCutP_genadd_SNoCutP_gen : ∀ x0 x1 x2 x3 x4 x5 . SNoCutP x0 x1SNoCutP x2 x3x4 = SNoCut x0 x1x5 = SNoCut x2 x3SNoCutP (binunion {add_SNo x6 x5|x6 ∈ x0} (prim5 x2 (add_SNo x4))) (binunion {add_SNo x6 x5|x6 ∈ x1} (prim5 x3 (add_SNo x4))) (proof)
Theorem add_SNoCut_eqadd_SNoCut_eq : ∀ x0 x1 x2 x3 x4 x5 . SNoCutP x0 x1SNoCutP x2 x3x4 = SNoCut x0 x1x5 = SNoCut x2 x3add_SNo x4 x5 = SNoCut (binunion {add_SNo x7 x5|x7 ∈ x0} (prim5 x2 (add_SNo x4))) (binunion {add_SNo x7 x5|x7 ∈ x1} (prim5 x3 (add_SNo x4))) (proof)
Known SNoLev_indSNoLev_ind : ∀ x0 : ι → ο . (∀ x1 . SNo x1(∀ x2 . x2SNoS_ (SNoLev x1)x0 x2)x0 x1)∀ x1 . SNo x1x0 x1
Known SNo_etaSNo_eta : ∀ x0 . SNo x0x0 = SNoCut (SNoL x0) (SNoR x0)
Known SNoCut_LeSNoCut_Le : ∀ x0 x1 x2 x3 . SNoCutP x0 x1SNoCutP x2 x3(∀ x4 . x4x0SNoLt x4 (SNoCut x2 x3))(∀ x4 . x4x3SNoLt (SNoCut x0 x1) x4)SNoLe (SNoCut x0 x1) (SNoCut x2 x3)
Known SNoCutP_SNoL_SNoRSNoCutP_SNoL_SNoR : ∀ x0 . SNo x0SNoCutP (SNoL x0) (SNoR x0)
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known SNoLt_trichotomy_orSNoLt_trichotomy_or : ∀ x0 x1 . SNo x0SNo x1or (or (SNoLt x0 x1) (x0 = x1)) (SNoLt x1 x0)
Known SNoR_SNoS_SNoR_SNoS_ : ∀ x0 . SNoR x0SNoS_ (SNoLev x0)
Known SNoLe_traSNoLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLe x1 x2SNoLe x0 x2
Theorem add_SNo_SNoCut_L_interpolateadd_SNo_SNoCut_L_interpolate : ∀ x0 x1 x2 x3 x4 x5 . SNoCutP x0 x1SNoCutP x2 x3x4 = SNoCut x0 x1x5 = SNoCut x2 x3∀ x6 . x6SNoL (add_SNo x4 x5)or (∀ x7 : ο . (∀ x8 . and (x8x0) (SNoLe x6 (add_SNo x8 x5))x7)x7) (∀ x7 : ο . (∀ x8 . and (x8x2) (SNoLe x6 (add_SNo x4 x8))x7)x7) (proof)
Known SNoL_SNoS_SNoL_SNoS_ : ∀ x0 . SNoL x0SNoS_ (SNoLev x0)
Theorem add_SNo_SNoCut_R_interpolateadd_SNo_SNoCut_R_interpolate : ∀ x0 x1 x2 x3 x4 x5 . SNoCutP x0 x1SNoCutP x2 x3x4 = SNoCut x0 x1x5 = SNoCut x2 x3∀ x6 . x6SNoR (add_SNo x4 x5)or (∀ x7 : ο . (∀ x8 . and (x8x1) (SNoLe (add_SNo x8 x5) x6)x7)x7) (∀ x7 : ο . (∀ x8 . and (x8x3) (SNoLe (add_SNo x4 x8) x6)x7)x7) (proof)