Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrKgQ..
/
14e73..
PUhgc..
/
f8fce..
vout
PrKgQ..
/
de156..
0.04 bars
TMPUc..
/
7be89..
ownership of
b3083..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPMx..
/
1f94b..
ownership of
4222d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMR9h..
/
4e475..
ownership of
bfc42..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMKwu..
/
14dfe..
ownership of
3eb6c..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMH4H..
/
ba923..
ownership of
15618..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMVEV..
/
4bf55..
ownership of
90aa4..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMV38..
/
d8ef5..
ownership of
8381c..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJs1..
/
9d41e..
ownership of
29a64..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMLfD..
/
bb0eb..
ownership of
04991..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMKTm..
/
3a4ce..
ownership of
6f1bc..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJqm..
/
94785..
ownership of
ef69d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMUDs..
/
2d591..
ownership of
ecf04..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMNYe..
/
b5cab..
ownership of
33046..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZdS..
/
ee8a0..
ownership of
e96f8..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGzQ..
/
99e38..
ownership of
5bbc1..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGgo..
/
ee0ef..
ownership of
fbab5..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMKvN..
/
229fa..
ownership of
58f3a..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJKF..
/
7a713..
ownership of
b2e11..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGH1..
/
511d4..
ownership of
77119..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFhp..
/
397c0..
ownership of
3316c..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZoV..
/
536e1..
ownership of
1bbdd..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPqB..
/
1c95a..
ownership of
1916f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMNdB..
/
844bf..
ownership of
11830..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMRxm..
/
eb27f..
ownership of
7a88d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJtf..
/
add6f..
ownership of
d8abc..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMG4j..
/
1ce64..
ownership of
6c6bb..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMNbS..
/
f64ce..
ownership of
d1612..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMP2B..
/
33d0c..
ownership of
d9d58..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMLEX..
/
acf45..
ownership of
e3ced..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJBf..
/
8ee7e..
ownership of
b31e8..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFx9..
/
3874f..
ownership of
a3a5c..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGSY..
/
a1454..
ownership of
6fd31..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMHZF..
/
9f7cc..
ownership of
bce5d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMU76..
/
c6f4b..
ownership of
f30a9..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMdY6..
/
00413..
ownership of
11c16..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQ1D..
/
9cb74..
ownership of
4a9ee..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQqc..
/
c5be6..
ownership of
44752..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbKW..
/
ea850..
ownership of
23911..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMVAQ..
/
2c3b6..
ownership of
15fc9..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPP4..
/
51633..
ownership of
41642..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMTGT..
/
66690..
ownership of
a3070..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQpM..
/
6eabe..
ownership of
234a3..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbcB..
/
ea00b..
ownership of
4ff83..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMV3N..
/
e80c0..
ownership of
b4019..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPxU..
/
0446e..
ownership of
67843..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMHyV..
/
d9ab3..
ownership of
7047b..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPjm..
/
b794f..
ownership of
c3fdc..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMV5n..
/
81d73..
ownership of
29cfb..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMX8f..
/
0358d..
ownership of
f187c..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQQG..
/
77327..
ownership of
f0c6a..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMKWm..
/
e7ef0..
ownership of
3897e..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFj5..
/
8d941..
ownership of
60944..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMche..
/
fd271..
ownership of
43cf7..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMVTW..
/
06f9d..
ownership of
85ab6..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
PUgrL..
/
c4ff7..
doc published by
PrEBh..
Definition
43cf7..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x0
x4
x5
⟶
x3
x4
x5
)
⟶
(
∀ x4 .
x3
x4
x4
)
⟶
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
(
∀ x4 x5 x6 .
x3
x4
x5
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
x3
x1
x2
Theorem
f187c..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x0
x1
x2
⟶
43cf7..
x0
x1
x2
(proof)
Definition
reflexive
reflexive
:=
λ x0 :
ι →
ι → ο
.
∀ x1 .
x0
x1
x1
Theorem
c3fdc..
:
∀ x0 :
ι →
ι → ο
.
reflexive
(
43cf7..
x0
)
(proof)
Definition
symmetric
symmetric
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
Theorem
67843..
:
∀ x0 :
ι →
ι → ο
.
symmetric
(
43cf7..
x0
)
(proof)
Definition
transitive
transitive
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 x3 .
x0
x1
x2
⟶
x0
x2
x3
⟶
x0
x1
x3
Theorem
4ff83..
:
∀ x0 :
ι →
ι → ο
.
transitive
(
43cf7..
x0
)
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
eqreln
eqreln
:=
λ x0 :
ι →
ι → ο
.
and
(
and
(
reflexive
x0
)
(
symmetric
x0
)
)
(
transitive
x0
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
a3070..
:
∀ x0 :
ι →
ι → ο
.
eqreln
(
43cf7..
x0
)
(proof)
Definition
per
per
:=
λ x0 :
ι →
ι → ο
.
and
(
symmetric
x0
)
(
transitive
x0
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
15fc9..
:
∀ x0 :
ι →
ι → ο
.
per
(
43cf7..
x0
)
(proof)
Theorem
44752..
:
∀ x0 x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
x3
)
⟶
(
∀ x2 .
x1
x2
x2
)
⟶
(
∀ x2 x3 .
43cf7..
x0
x2
x3
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 x3 x4 .
43cf7..
x0
x2
x3
⟶
x1
x2
x3
⟶
43cf7..
x0
x3
x4
⟶
x1
x3
x4
⟶
x1
x2
x4
)
⟶
∀ x2 x3 .
43cf7..
x0
x2
x3
⟶
x1
x2
x3
(proof)
Param
ap
ap
:
ι
→
ι
→
ι
Definition
3897e..
:=
λ x0 x1 x2 x3 x4 .
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
x6
∈
x0
⟶
x5
(
ap
x1
x6
)
(
ap
x2
x6
)
)
⟶
(
∀ x6 .
x5
x6
x6
)
⟶
(
∀ x6 x7 .
x5
x6
x7
⟶
x5
x7
x6
)
⟶
(
∀ x6 x7 x8 .
x5
x6
x7
⟶
x5
x7
x8
⟶
x5
x6
x8
)
⟶
x5
x3
x4
Theorem
11c16..
:
∀ x0 x1 x2 x3 .
x3
∈
x0
⟶
3897e..
x0
x1
x2
(
ap
x1
x3
)
(
ap
x2
x3
)
(proof)
Theorem
bce5d..
:
∀ x0 x1 x2 .
reflexive
(
3897e..
x0
x1
x2
)
(proof)
Theorem
a3a5c..
:
∀ x0 x1 x2 .
symmetric
(
3897e..
x0
x1
x2
)
(proof)
Theorem
e3ced..
:
∀ x0 x1 x2 .
transitive
(
3897e..
x0
x1
x2
)
(proof)
Theorem
d1612..
:
∀ x0 x1 x2 .
eqreln
(
3897e..
x0
x1
x2
)
(proof)
Theorem
d8abc..
:
∀ x0 x1 x2 .
per
(
3897e..
x0
x1
x2
)
(proof)
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
iff_refl
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Known
iff_sym
iff_sym
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
iff
x1
x0
Known
iff_trans
iff_trans
:
∀ x0 x1 x2 : ο .
iff
x0
x1
⟶
iff
x1
x2
⟶
iff
x0
x2
Theorem
11830..
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
∀ x3 .
x3
∈
setexp
x1
x0
⟶
∀ x4 x5 .
3897e..
x0
x2
x3
x4
x5
⟶
iff
(
x4
∈
x1
)
(
x5
∈
x1
)
(proof)
Theorem
1bbdd..
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
∀ x3 .
x3
∈
setexp
x1
x0
⟶
∀ x4 x5 .
3897e..
x0
x2
x3
x4
x5
⟶
x4
∈
x1
⟶
x5
∈
x1
(proof)
Theorem
77119..
:
∀ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x0
⟶
x3
(
ap
x1
x4
)
(
ap
x2
x4
)
)
⟶
(
∀ x4 .
x3
x4
x4
)
⟶
(
∀ x4 x5 .
3897e..
x0
x1
x2
x4
x5
⟶
x3
x4
x5
⟶
x3
x5
x4
)
⟶
(
∀ x4 x5 x6 .
3897e..
x0
x1
x2
x4
x5
⟶
x3
x4
x5
⟶
3897e..
x0
x1
x2
x5
x6
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
∀ x4 x5 .
3897e..
x0
x1
x2
x4
x5
⟶
x3
x4
x5
(proof)
Theorem
58f3a..
:
∀ x0 x1 x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x0
⟶
x3
(
ap
x1
x4
)
=
x3
(
ap
x2
x4
)
)
⟶
∀ x4 x5 .
3897e..
x0
x1
x2
x4
x5
⟶
x3
x4
=
x3
x5
(proof)
Param
Subq
Subq
:
ι
→
ι
→
ο
Definition
MetaCat_coequalizer_p
coequalizer_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 .
λ x10 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
x1
x4
x5
x7
)
)
(
x0
x8
)
)
(
x1
x5
x8
x9
)
)
(
x3
x4
x5
x8
x9
x6
=
x3
x4
x5
x8
x9
x7
)
)
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x1
x5
x11
x12
⟶
x3
x4
x5
x11
x12
x6
=
x3
x4
x5
x11
x12
x7
⟶
and
(
and
(
x1
x8
x11
(
x10
x11
x12
)
)
(
x3
x5
x8
x11
(
x10
x11
x12
)
x9
=
x12
)
)
(
∀ x13 .
x1
x8
x11
x13
⟶
x3
x5
x8
x11
x13
x9
=
x12
⟶
x13
=
x10
x11
x12
)
)
Definition
MetaCat_coequalizer_struct_p
coequalizer_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 :
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 x8 .
x0
x7
⟶
x0
x8
⟶
∀ x9 x10 .
x1
x7
x8
x9
⟶
x1
x7
x8
x10
⟶
MetaCat_coequalizer_p
x0
x1
x2
x3
x7
x8
x9
x10
(
x4
x7
x8
x9
x10
)
(
x5
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
)
Definition
HomSet
SetHom
:=
λ x0 x1 x2 .
x2
∈
setexp
x1
x0
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
lam_id
lam_id
:=
λ x0 .
lam
x0
(
λ x1 .
x1
)
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
canonical_elt
canonical_elt
:
(
ι
→
ι
→
ο
) →
ι
→
ι
Definition
quotient
quotient
:=
λ x0 :
ι →
ι → ο
.
λ x1 .
and
(
x0
x1
x1
)
(
x1
=
canonical_elt
x0
x1
)
Known
41253..
and8I
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
Known
Sep_Subq
Sep_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
⊆
x0
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
canonical_elt_eq
canonical_elt_eq
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 .
x0
x1
x2
⟶
canonical_elt
x0
x1
=
canonical_elt
x0
x2
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
canonical_elt_rel
canonical_elt_rel
:
∀ x0 :
ι →
ι → ο
.
∀ x1 .
x0
x1
x1
⟶
x0
x1
(
canonical_elt
x0
x1
)
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
canonical_elt_idem
canonical_elt_idem
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 .
x0
x1
x1
⟶
canonical_elt
x0
x1
=
canonical_elt
x0
(
canonical_elt
x0
x1
)
Theorem
5bbc1..
MetaCatSet_coequalizer_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_struct_p
x0
HomSet
lam_id
(
λ x7 x8 x9 .
lam_comp
x7
)
x2
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Definition
True
True
:=
∀ x0 : ο .
x0
⟶
x0
Known
TrueI
TrueI
:
True
Theorem
33046..
MetaCatSet_coequalizer
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_struct_p
(
λ x6 .
True
)
HomSet
lam_id
(
λ x6 x7 x8 .
lam_comp
x6
)
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
6aa34..
UnivOf_Subq_closed
:
∀ x0 x1 .
x1
∈
prim6
x0
⟶
∀ x2 .
x2
⊆
x1
⟶
x2
∈
prim6
x0
Theorem
ef69d..
MetaCatHFSet_coequalizer
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_struct_p
(
λ x6 .
x6
∈
prim6
0
)
HomSet
lam_id
(
λ x6 x7 x8 .
lam_comp
x6
)
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
04991..
MetaCatSmallSet_coequalizer
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_struct_p
(
λ x6 .
x6
∈
prim6
(
prim6
0
)
)
HomSet
lam_id
(
λ x6 x7 x8 .
lam_comp
x6
)
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
MetaCat
MetaCat
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Param
setsum
setsum
:
ι
→
ι
→
ι
Param
MetaCat_pushout_constr_p
pushout_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Param
MetaCat_coproduct_constr_p
coproduct_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
b0aad..
coproduct_coequalizer_pushout_constr_ex
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_struct_p
x0
x1
x2
x3
x5
x7
x9
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_constr_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
Known
3c078..
MetaCatSet_coproduct_gen
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setsum
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 : ο .
(
∀ x8 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
x0
HomSet
(
λ x9 .
lam
x9
(
λ x10 .
x10
)
)
(
λ x9 x10 x11 x12 x13 .
lam
x9
(
λ x14 .
ap
x12
(
ap
x13
x14
)
)
)
x2
x4
x6
x8
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Theorem
8381c..
MetaCatSet_pushout_gen
:
∀ x0 :
ι → ο
.
MetaCat
x0
HomSet
lam_id
(
λ x1 x2 x3 .
lam_comp
x1
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x2
⊆
x1
⟶
x0
x2
)
⟶
(
∀ x1 .
x0
x1
⟶
∀ x2 .
x0
x2
⟶
x0
(
setsum
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x7 : ο .
(
∀ x8 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_constr_p
x0
HomSet
lam_id
(
λ x9 x10 x11 .
lam_comp
x9
)
x2
x4
x6
x8
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Known
e4125..
MetaCatSet
:
MetaCat
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
Known
c28ea..
MetaCatSet_coproduct
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
(
λ x8 .
True
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Theorem
15618..
MetaCatSet_pushout
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_constr_p
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
2fb6a..
MetaCatHFSet
:
MetaCat
(
λ x0 .
x0
∈
prim6
0
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
Known
5604f..
MetaCatHFSet_coproduct
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
(
λ x8 .
x8
∈
prim6
0
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Theorem
bfc42..
MetaCatHFSet_pushout
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_constr_p
(
λ x8 .
x8
∈
prim6
0
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
68978..
MetaCatSmallSet
:
MetaCat
(
λ x0 .
x0
∈
prim6
(
prim6
0
)
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
Known
002ee..
MetaCatSmallSet_coproduct
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
(
λ x8 .
x8
∈
prim6
(
prim6
0
)
)
HomSet
(
λ x8 .
lam
x8
(
λ x9 .
x9
)
)
(
λ x8 x9 x10 x11 x12 .
lam
x8
(
λ x13 .
ap
x11
(
ap
x12
x13
)
)
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Theorem
b3083..
MetaCatSmallSet_pushout
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_constr_p
(
λ x8 .
x8
∈
prim6
(
prim6
0
)
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)