Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrKgQ../14e73..
PUhgc../f8fce..
vout
PrKgQ../de156.. 0.04 bars
TMPUc../7be89.. ownership of b3083.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPMx../1f94b.. ownership of 4222d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMR9h../4e475.. ownership of bfc42.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMKwu../14dfe.. ownership of 3eb6c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMH4H../ba923.. ownership of 15618.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMVEV../4bf55.. ownership of 90aa4.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMV38../d8ef5.. ownership of 8381c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJs1../9d41e.. ownership of 29a64.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMLfD../bb0eb.. ownership of 04991.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMKTm../3a4ce.. ownership of 6f1bc.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJqm../94785.. ownership of ef69d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMUDs../2d591.. ownership of ecf04.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMNYe../b5cab.. ownership of 33046.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZdS../ee8a0.. ownership of e96f8.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMGzQ../99e38.. ownership of 5bbc1.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMGgo../ee0ef.. ownership of fbab5.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMKvN../229fa.. ownership of 58f3a.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJKF../7a713.. ownership of b2e11.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMGH1../511d4.. ownership of 77119.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMFhp../397c0.. ownership of 3316c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZoV../536e1.. ownership of 1bbdd.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPqB../1c95a.. ownership of 1916f.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMNdB../844bf.. ownership of 11830.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMRxm../eb27f.. ownership of 7a88d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJtf../add6f.. ownership of d8abc.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMG4j../1ce64.. ownership of 6c6bb.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMNbS../f64ce.. ownership of d1612.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMP2B../33d0c.. ownership of d9d58.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMLEX../acf45.. ownership of e3ced.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJBf../8ee7e.. ownership of b31e8.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMFx9../3874f.. ownership of a3a5c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMGSY../a1454.. ownership of 6fd31.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMHZF../9f7cc.. ownership of bce5d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMU76../c6f4b.. ownership of f30a9.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMdY6../00413.. ownership of 11c16.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQ1D../9cb74.. ownership of 4a9ee.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQqc../c5be6.. ownership of 44752.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMbKW../ea850.. ownership of 23911.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMVAQ../2c3b6.. ownership of 15fc9.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPP4../51633.. ownership of 41642.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMTGT../66690.. ownership of a3070.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQpM../6eabe.. ownership of 234a3.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMbcB../ea00b.. ownership of 4ff83.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMV3N../e80c0.. ownership of b4019.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPxU../0446e.. ownership of 67843.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMHyV../d9ab3.. ownership of 7047b.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPjm../b794f.. ownership of c3fdc.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMV5n../81d73.. ownership of 29cfb.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMX8f../0358d.. ownership of f187c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQQG../77327.. ownership of f0c6a.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMKWm../e7ef0.. ownership of 3897e.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMFj5../8d941.. ownership of 60944.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMche../fd271.. ownership of 43cf7.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMVTW../06f9d.. ownership of 85ab6.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
PUgrL../c4ff7.. doc published by PrEBh..
Definition 43cf7.. := λ x0 : ι → ι → ο . λ x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x0 x4 x5x3 x4 x5)(∀ x4 . x3 x4 x4)(∀ x4 x5 . x3 x4 x5x3 x5 x4)(∀ x4 x5 x6 . x3 x4 x5x3 x5 x6x3 x4 x6)x3 x1 x2
Theorem f187c.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x0 x1 x243cf7.. x0 x1 x2 (proof)
Definition reflexivereflexive := λ x0 : ι → ι → ο . ∀ x1 . x0 x1 x1
Theorem c3fdc.. : ∀ x0 : ι → ι → ο . reflexive (43cf7.. x0) (proof)
Definition symmetricsymmetric := λ x0 : ι → ι → ο . ∀ x1 x2 . x0 x1 x2x0 x2 x1
Theorem 67843.. : ∀ x0 : ι → ι → ο . symmetric (43cf7.. x0) (proof)
Definition transitivetransitive := λ x0 : ι → ι → ο . ∀ x1 x2 x3 . x0 x1 x2x0 x2 x3x0 x1 x3
Theorem 4ff83.. : ∀ x0 : ι → ι → ο . transitive (43cf7.. x0) (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition eqrelneqreln := λ x0 : ι → ι → ο . and (and (reflexive x0) (symmetric x0)) (transitive x0)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Theorem a3070.. : ∀ x0 : ι → ι → ο . eqreln (43cf7.. x0) (proof)
Definition perper := λ x0 : ι → ι → ο . and (symmetric x0) (transitive x0)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem 15fc9.. : ∀ x0 : ι → ι → ο . per (43cf7.. x0) (proof)
Theorem 44752.. : ∀ x0 x1 : ι → ι → ο . (∀ x2 x3 . x0 x2 x3x1 x2 x3)(∀ x2 . x1 x2 x2)(∀ x2 x3 . 43cf7.. x0 x2 x3x1 x2 x3x1 x3 x2)(∀ x2 x3 x4 . 43cf7.. x0 x2 x3x1 x2 x343cf7.. x0 x3 x4x1 x3 x4x1 x2 x4)∀ x2 x3 . 43cf7.. x0 x2 x3x1 x2 x3 (proof)
Param apap : ιιι
Definition 3897e.. := λ x0 x1 x2 x3 x4 . ∀ x5 : ι → ι → ο . (∀ x6 . x6x0x5 (ap x1 x6) (ap x2 x6))(∀ x6 . x5 x6 x6)(∀ x6 x7 . x5 x6 x7x5 x7 x6)(∀ x6 x7 x8 . x5 x6 x7x5 x7 x8x5 x6 x8)x5 x3 x4
Theorem 11c16.. : ∀ x0 x1 x2 x3 . x3x03897e.. x0 x1 x2 (ap x1 x3) (ap x2 x3) (proof)
Theorem bce5d.. : ∀ x0 x1 x2 . reflexive (3897e.. x0 x1 x2) (proof)
Theorem a3a5c.. : ∀ x0 x1 x2 . symmetric (3897e.. x0 x1 x2) (proof)
Theorem e3ced.. : ∀ x0 x1 x2 . transitive (3897e.. x0 x1 x2) (proof)
Theorem d1612.. : ∀ x0 x1 x2 . eqreln (3897e.. x0 x1 x2) (proof)
Theorem d8abc.. : ∀ x0 x1 x2 . per (3897e.. x0 x1 x2) (proof)
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known iff_refliff_refl : ∀ x0 : ο . iff x0 x0
Known iff_symiff_sym : ∀ x0 x1 : ο . iff x0 x1iff x1 x0
Known iff_transiff_trans : ∀ x0 x1 x2 : ο . iff x0 x1iff x1 x2iff x0 x2
Theorem 11830.. : ∀ x0 x1 x2 . x2setexp x1 x0∀ x3 . x3setexp x1 x0∀ x4 x5 . 3897e.. x0 x2 x3 x4 x5iff (x4x1) (x5x1) (proof)
Theorem 1bbdd.. : ∀ x0 x1 x2 . x2setexp x1 x0∀ x3 . x3setexp x1 x0∀ x4 x5 . 3897e.. x0 x2 x3 x4 x5x4x1x5x1 (proof)
Theorem 77119.. : ∀ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 . x4x0x3 (ap x1 x4) (ap x2 x4))(∀ x4 . x3 x4 x4)(∀ x4 x5 . 3897e.. x0 x1 x2 x4 x5x3 x4 x5x3 x5 x4)(∀ x4 x5 x6 . 3897e.. x0 x1 x2 x4 x5x3 x4 x53897e.. x0 x1 x2 x5 x6x3 x5 x6x3 x4 x6)∀ x4 x5 . 3897e.. x0 x1 x2 x4 x5x3 x4 x5 (proof)
Theorem 58f3a.. : ∀ x0 x1 x2 . ∀ x3 : ι → ι . (∀ x4 . x4x0x3 (ap x1 x4) = x3 (ap x2 x4))∀ x4 x5 . 3897e.. x0 x1 x2 x4 x5x3 x4 = x3 x5 (proof)
Param SubqSubq : ιιο
Definition MetaCat_coequalizer_pcoequalizer_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 . λ x10 : ι → ι → ι . and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (x1 x4 x5 x7)) (x0 x8)) (x1 x5 x8 x9)) (x3 x4 x5 x8 x9 x6 = x3 x4 x5 x8 x9 x7)) (∀ x11 . x0 x11∀ x12 . x1 x5 x11 x12x3 x4 x5 x11 x12 x6 = x3 x4 x5 x11 x12 x7and (and (x1 x8 x11 (x10 x11 x12)) (x3 x5 x8 x11 (x10 x11 x12) x9 = x12)) (∀ x13 . x1 x8 x11 x13x3 x5 x8 x11 x13 x9 = x12x13 = x10 x11 x12))
Definition MetaCat_coequalizer_struct_pcoequalizer_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 : ι → ι → ι → ι → ι . λ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 x8 . x0 x7x0 x8∀ x9 x10 . x1 x7 x8 x9x1 x7 x8 x10MetaCat_coequalizer_p x0 x1 x2 x3 x7 x8 x9 x10 (x4 x7 x8 x9 x10) (x5 x7 x8 x9 x10) (x6 x7 x8 x9 x10)
Definition HomSetSetHom := λ x0 x1 x2 . x2setexp x1 x0
Param lamSigma : ι(ιι) → ι
Definition lam_idlam_id := λ x0 . lam x0 (λ x1 . x1)
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Param SepSep : ι(ιο) → ι
Param canonical_eltcanonical_elt : (ιιο) → ιι
Definition quotientquotient := λ x0 : ι → ι → ο . λ x1 . and (x0 x1 x1) (x1 = canonical_elt x0 x1)
Known 41253..and8I : ∀ x0 x1 x2 x3 x4 x5 x6 x7 : ο . x0x1x2x3x4x5x6x7and (and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6) x7
Known Sep_SubqSep_Subq : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1x0
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known canonical_elt_eqcanonical_elt_eq : ∀ x0 : ι → ι → ο . per x0∀ x1 x2 . x0 x1 x2canonical_elt x0 x1 = canonical_elt x0 x2
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known canonical_elt_relcanonical_elt_rel : ∀ x0 : ι → ι → ο . ∀ x1 . x0 x1 x1x0 x1 (canonical_elt x0 x1)
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known canonical_elt_idemcanonical_elt_idem : ∀ x0 : ι → ι → ο . per x0∀ x1 . x0 x1 x1canonical_elt x0 x1 = canonical_elt x0 (canonical_elt x0 x1)
Theorem 5bbc1..MetaCatSet_coequalizer_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x2x1x0 x2)∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_struct_p x0 HomSet lam_id (λ x7 x8 x9 . lam_comp x7) x2 x4 x6x5)x5)x3)x3)x1)x1 (proof)
Definition TrueTrue := ∀ x0 : ο . x0x0
Known TrueITrueI : True
Theorem 33046..MetaCatSet_coequalizer : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_struct_p (λ x6 . True) HomSet lam_id (λ x6 x7 x8 . lam_comp x6) x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Known 6aa34..UnivOf_Subq_closed : ∀ x0 x1 . x1prim6 x0∀ x2 . x2x1x2prim6 x0
Theorem ef69d..MetaCatHFSet_coequalizer : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_struct_p (λ x6 . x6prim6 0) HomSet lam_id (λ x6 x7 x8 . lam_comp x6) x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Theorem 04991..MetaCatSmallSet_coequalizer : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_struct_p (λ x6 . x6prim6 (prim6 0)) HomSet lam_id (λ x6 x7 x8 . lam_comp x6) x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Param setsumsetsum : ιιι
Param MetaCat_pushout_constr_ppushout_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Param MetaCat_coproduct_constr_pcoproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Known b0aad..coproduct_coequalizer_pushout_constr_ex : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3(∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_struct_p x0 x1 x2 x3 x5 x7 x9x8)x8)x6)x6)x4)x4)(∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_constr_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4
Known 3c078..MetaCatSet_coproduct_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x0 x2x0 (setsum x1 x2))∀ x1 : ο . (∀ x2 : ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι . (∀ x7 : ο . (∀ x8 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p x0 HomSet (λ x9 . lam x9 (λ x10 . x10)) (λ x9 x10 x11 x12 x13 . lam x9 (λ x14 . ap x12 (ap x13 x14))) x2 x4 x6 x8x7)x7)x5)x5)x3)x3)x1)x1
Theorem 8381c..MetaCatSet_pushout_gen : ∀ x0 : ι → ο . MetaCat x0 HomSet lam_id (λ x1 x2 x3 . lam_comp x1)(∀ x1 . x0 x1∀ x2 . x2x1x0 x2)(∀ x1 . x0 x1∀ x2 . x0 x2x0 (setsum x1 x2))∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι . (∀ x7 : ο . (∀ x8 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_constr_p x0 HomSet lam_id (λ x9 x10 x11 . lam_comp x9) x2 x4 x6 x8x7)x7)x5)x5)x3)x3)x1)x1 (proof)
Known e4125..MetaCatSet : MetaCat (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0)
Known c28ea..MetaCatSet_coproduct : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p (λ x8 . True) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Theorem 15618..MetaCatSet_pushout : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_constr_p (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Known 2fb6a..MetaCatHFSet : MetaCat (λ x0 . x0prim6 0) HomSet lam_id (λ x0 x1 x2 . lam_comp x0)
Known 5604f..MetaCatHFSet_coproduct : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p (λ x8 . x8prim6 0) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Theorem bfc42..MetaCatHFSet_pushout : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_constr_p (λ x8 . x8prim6 0) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Known 68978..MetaCatSmallSet : MetaCat (λ x0 . x0prim6 (prim6 0)) HomSet lam_id (λ x0 x1 x2 . lam_comp x0)
Known 002ee..MetaCatSmallSet_coproduct : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p (λ x8 . x8prim6 (prim6 0)) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Theorem b3083..MetaCatSmallSet_pushout : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_constr_p (λ x8 . x8prim6 (prim6 0)) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)