Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr58w..
/
1baaf..
PUghj..
/
147ff..
vout
Pr58w..
/
7803e..
0.10 bars
TMR9v..
/
373b9..
ownership of
3aff4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZMv..
/
aa19e..
ownership of
6d4e8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTV1..
/
cf98c..
ownership of
1b546..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX4k..
/
8a7e3..
ownership of
781e3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX94..
/
5d6e3..
ownership of
9373a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMULf..
/
55d0f..
ownership of
9be07..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR7D..
/
4762d..
ownership of
05e79..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFWe..
/
632bd..
ownership of
c6e07..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJLz..
/
42311..
ownership of
e948f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcuy..
/
b2ef5..
ownership of
b5489..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX5i..
/
10a8e..
ownership of
f5992..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUkf..
/
83b94..
ownership of
cc698..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRS4..
/
3dfb5..
ownership of
a73a1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHsp..
/
4606e..
ownership of
616b0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcvE..
/
371e2..
ownership of
28b42..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVSB..
/
07cdf..
ownership of
4d288..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMamX..
/
bd961..
ownership of
ed994..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcJP..
/
e44ff..
ownership of
8ff08..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPhx..
/
841a7..
ownership of
c118c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMctK..
/
4ab08..
ownership of
e9b20..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM4M..
/
d6ed8..
ownership of
eadd4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQWc..
/
08ae5..
ownership of
028ce..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbSA..
/
af246..
ownership of
e38f5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVES..
/
70ca0..
ownership of
dd5e9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHE1..
/
69260..
ownership of
0b283..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH5K..
/
1dc5e..
ownership of
e903b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFTe..
/
8b01b..
ownership of
3b98c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXQP..
/
8d049..
ownership of
88291..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJxU..
/
e0cf0..
ownership of
0b038..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPvf..
/
d94b8..
ownership of
333e3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVWZ..
/
4f96a..
ownership of
d9e19..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVFG..
/
b4151..
ownership of
011b9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM8S..
/
d52d9..
ownership of
2ae3a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNY5..
/
d994b..
ownership of
b8aff..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHr1..
/
dc28b..
ownership of
9ef0b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFBN..
/
c9d84..
ownership of
6dbbf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUM2G..
/
3f298..
doc published by
PrCmT..
Known
df_polarityN__df_psubclN__df_lhyp__df_laut__df_watsN__df_pautN__df_ldil__df_ltrn__df_dilN__df_trnN__df_trl__df_tgrp__df_tendo__df_edring_rN__df_edring__df_dveca__df_disoa__df_dvech
:
∀ x0 : ο .
(
wceq
cpolN
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
catm
)
)
(
λ x2 .
cin
(
cfv
(
cv
x1
)
catm
)
(
ciin
(
λ x3 .
cv
x2
)
(
λ x3 .
cfv
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
coc
)
)
(
cfv
(
cv
x1
)
cpmap
)
)
)
)
)
)
⟶
wceq
cpscN
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cab
(
λ x2 .
wa
(
wss
(
cv
x2
)
(
cfv
(
cv
x1
)
catm
)
)
(
wceq
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cpolN
)
)
(
cfv
(
cv
x1
)
cpolN
)
)
(
cv
x2
)
)
)
)
)
⟶
wceq
clh
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wbr
(
cv
x2
)
(
cfv
(
cv
x1
)
cp1
)
(
cfv
(
cv
x1
)
ccvr
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
claut
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cab
(
λ x2 .
wa
(
wf1o
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wb
(
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cple
)
)
(
wbr
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cple
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
)
)
)
⟶
wceq
cwpointsN
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
catm
)
(
λ x2 .
cdif
(
cfv
(
cv
x1
)
catm
)
(
cfv
(
csn
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cpolN
)
)
)
)
)
⟶
wceq
cpautN
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cab
(
λ x2 .
wa
(
wf1o
(
cfv
(
cv
x1
)
cpsubsp
)
(
cfv
(
cv
x1
)
cpsubsp
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wb
(
wss
(
cv
x3
)
(
cv
x4
)
)
(
wss
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
cpsubsp
)
)
(
λ x3 .
cfv
(
cv
x1
)
cpsubsp
)
)
)
)
)
⟶
wceq
cldil
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wbr
(
cv
x4
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cple
)
⟶
wceq
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cv
x4
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x1
)
claut
)
)
)
)
⟶
wceq
cltrn
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wa
(
wn
(
wbr
(
cv
x4
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cple
)
)
)
(
wn
(
wbr
(
cv
x5
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cple
)
)
)
⟶
wceq
(
co
(
co
(
cv
x4
)
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
cjn
)
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cmee
)
)
(
co
(
co
(
cv
x5
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
cjn
)
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cmee
)
)
)
(
λ x5 .
cfv
(
cv
x1
)
catm
)
)
(
λ x4 .
cfv
(
cv
x1
)
catm
)
)
(
λ x3 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cldil
)
)
)
)
)
⟶
wceq
cdilN
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
catm
)
(
λ x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wss
(
cv
x4
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cwpointsN
)
)
⟶
wceq
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cv
x4
)
)
(
λ x4 .
cfv
(
cv
x1
)
cpsubsp
)
)
(
λ x3 .
cfv
(
cv
x1
)
cpautN
)
)
)
)
⟶
wceq
ctrnN
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
catm
)
(
λ x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
cin
(
co
(
cv
x4
)
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
cpadd
)
)
(
cfv
(
csn
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cpolN
)
)
)
(
cin
(
co
(
cv
x5
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
cpadd
)
)
(
cfv
(
csn
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cpolN
)
)
)
)
(
λ x5 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cwpointsN
)
)
)
(
λ x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cwpointsN
)
)
)
(
λ x3 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdilN
)
)
)
)
)
⟶
wceq
ctrl
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cmpt
(
λ x3 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
λ x3 .
crio
(
λ x4 .
wral
(
λ x5 .
wn
(
wbr
(
cv
x5
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cple
)
)
⟶
wceq
(
cv
x4
)
(
co
(
co
(
cv
x5
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
cjn
)
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cmee
)
)
)
(
λ x5 .
cfv
(
cv
x1
)
catm
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
)
)
)
⟶
wceq
ctgrp
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cpr
(
cop
(
cfv
cnx
cbs
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
λ x3 x4 .
ccom
(
cv
x3
)
(
cv
x4
)
)
)
)
)
)
)
⟶
wceq
ctendo
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cab
(
λ x3 .
w3a
(
wf
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
cv
x3
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
cfv
(
ccom
(
cv
x4
)
(
cv
x5
)
)
(
cv
x3
)
)
(
ccom
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
)
)
(
λ x5 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
)
(
λ x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
)
(
wral
(
λ x4 .
wbr
(
cfv
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctrl
)
)
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctrl
)
)
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
)
)
)
)
)
⟶
wceq
cedring_rN
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
(
λ x3 x4 .
cmpt
(
λ x5 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
λ x5 .
ccom
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
(
λ x3 x4 .
ccom
(
cv
x4
)
(
cv
x3
)
)
)
)
)
)
)
⟶
wceq
cedring
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
(
λ x3 x4 .
cmpt
(
λ x5 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
λ x5 .
ccom
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
(
λ x3 x4 .
ccom
(
cv
x3
)
(
cv
x4
)
)
)
)
)
)
)
⟶
wceq
cdveca
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
λ x3 x4 .
ccom
(
cv
x3
)
(
cv
x4
)
)
)
)
(
cop
(
cfv
cnx
csca
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cedring
)
)
)
)
(
csn
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
λ x3 x4 .
cfv
(
cv
x4
)
(
cv
x3
)
)
)
)
)
)
)
)
⟶
wceq
cdia
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cmpt
(
λ x3 .
crab
(
λ x4 .
wbr
(
cv
x4
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
crab
(
λ x4 .
wbr
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctrl
)
)
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cple
)
)
(
λ x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
)
)
)
)
⟶
wceq
cdvh
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
clh
)
(
λ x2 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cxp
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x3 x4 .
cxp
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
)
(
λ x3 x4 .
cxp
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
)
(
λ x3 x4 .
cop
(
ccom
(
cfv
(
cv
x3
)
c1st
)
(
cfv
(
cv
x4
)
c1st
)
)
(
cmpt
(
λ x5 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
λ x5 .
ccom
(
cfv
(
cv
x5
)
(
cfv
(
cv
x3
)
c2nd
)
)
(
cfv
(
cv
x5
)
(
cfv
(
cv
x4
)
c2nd
)
)
)
)
)
)
)
(
cop
(
cfv
cnx
csca
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cedring
)
)
)
)
(
csn
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
(
λ x3 x4 .
cxp
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cltrn
)
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ctendo
)
)
)
(
λ x3 x4 .
cop
(
cfv
(
cfv
(
cv
x4
)
c1st
)
(
cv
x3
)
)
(
ccom
(
cv
x3
)
(
cfv
(
cv
x4
)
c2nd
)
)
)
)
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_polarityN
:
wceq
cpolN
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
catm
)
)
(
λ x1 .
cin
(
cfv
(
cv
x0
)
catm
)
(
ciin
(
λ x2 .
cv
x1
)
(
λ x2 .
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
coc
)
)
(
cfv
(
cv
x0
)
cpmap
)
)
)
)
)
)
(proof)
Theorem
df_psubclN
:
wceq
cpscN
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cab
(
λ x1 .
wa
(
wss
(
cv
x1
)
(
cfv
(
cv
x0
)
catm
)
)
(
wceq
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cpolN
)
)
(
cfv
(
cv
x0
)
cpolN
)
)
(
cv
x1
)
)
)
)
)
(proof)
Theorem
df_lhyp
:
wceq
clh
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wbr
(
cv
x1
)
(
cfv
(
cv
x0
)
cp1
)
(
cfv
(
cv
x0
)
ccvr
)
)
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_laut
:
wceq
claut
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cab
(
λ x1 .
wa
(
wf1o
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
(
cv
x1
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wb
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cple
)
)
(
wbr
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x0
)
cple
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
)
)
)
(proof)
Theorem
df_watsN
:
wceq
cwpointsN
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
catm
)
(
λ x1 .
cdif
(
cfv
(
cv
x0
)
catm
)
(
cfv
(
csn
(
cv
x1
)
)
(
cfv
(
cv
x0
)
cpolN
)
)
)
)
)
(proof)
Theorem
df_pautN
:
wceq
cpautN
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cab
(
λ x1 .
wa
(
wf1o
(
cfv
(
cv
x0
)
cpsubsp
)
(
cfv
(
cv
x0
)
cpsubsp
)
(
cv
x1
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wb
(
wss
(
cv
x2
)
(
cv
x3
)
)
(
wss
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
cpsubsp
)
)
(
λ x2 .
cfv
(
cv
x0
)
cpsubsp
)
)
)
)
)
(proof)
Theorem
df_ldil
:
wceq
cldil
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cple
)
⟶
wceq
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cv
x3
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x0
)
claut
)
)
)
)
(proof)
Theorem
df_ltrn
:
wceq
cltrn
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wa
(
wn
(
wbr
(
cv
x3
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cple
)
)
)
(
wn
(
wbr
(
cv
x4
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cple
)
)
)
⟶
wceq
(
co
(
co
(
cv
x3
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
cjn
)
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cmee
)
)
(
co
(
co
(
cv
x4
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
cjn
)
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cmee
)
)
)
(
λ x4 .
cfv
(
cv
x0
)
catm
)
)
(
λ x3 .
cfv
(
cv
x0
)
catm
)
)
(
λ x2 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cldil
)
)
)
)
)
(proof)
Theorem
df_dilN
:
wceq
cdilN
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
catm
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wss
(
cv
x3
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cwpointsN
)
)
⟶
wceq
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cv
x3
)
)
(
λ x3 .
cfv
(
cv
x0
)
cpsubsp
)
)
(
λ x2 .
cfv
(
cv
x0
)
cpautN
)
)
)
)
(proof)
Theorem
df_trnN
:
wceq
ctrnN
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
catm
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
cin
(
co
(
cv
x3
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
cpadd
)
)
(
cfv
(
csn
(
cv
x1
)
)
(
cfv
(
cv
x0
)
cpolN
)
)
)
(
cin
(
co
(
cv
x4
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
cpadd
)
)
(
cfv
(
csn
(
cv
x1
)
)
(
cfv
(
cv
x0
)
cpolN
)
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cwpointsN
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cwpointsN
)
)
)
(
λ x2 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdilN
)
)
)
)
)
(proof)
Theorem
df_trl
:
wceq
ctrl
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
λ x2 .
crio
(
λ x3 .
wral
(
λ x4 .
wn
(
wbr
(
cv
x4
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cple
)
)
⟶
wceq
(
cv
x3
)
(
co
(
co
(
cv
x4
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
cjn
)
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cmee
)
)
)
(
λ x4 .
cfv
(
cv
x0
)
catm
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
)
)
)
(proof)
Theorem
df_tgrp
:
wceq
ctgrp
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cpr
(
cop
(
cfv
cnx
cbs
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
λ x2 x3 .
ccom
(
cv
x2
)
(
cv
x3
)
)
)
)
)
)
)
(proof)
Theorem
df_tendo
:
wceq
ctendo
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cab
(
λ x2 .
w3a
(
wf
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
cfv
(
ccom
(
cv
x3
)
(
cv
x4
)
)
(
cv
x2
)
)
(
ccom
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
)
(
wral
(
λ x3 .
wbr
(
cfv
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctrl
)
)
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctrl
)
)
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
)
)
)
)
)
(proof)
Theorem
df_edring_rN
:
wceq
cedring_rN
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
(
λ x2 x3 .
cmpt
(
λ x4 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
λ x4 .
ccom
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x3
)
)
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
(
λ x2 x3 .
ccom
(
cv
x3
)
(
cv
x2
)
)
)
)
)
)
)
(proof)
Theorem
df_edring
:
wceq
cedring
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
(
λ x2 x3 .
cmpt
(
λ x4 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
λ x4 .
ccom
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x3
)
)
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
(
λ x2 x3 .
ccom
(
cv
x2
)
(
cv
x3
)
)
)
)
)
)
)
(proof)
Theorem
df_dveca
:
wceq
cdveca
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
λ x2 x3 .
ccom
(
cv
x2
)
(
cv
x3
)
)
)
)
(
cop
(
cfv
cnx
csca
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cedring
)
)
)
)
(
csn
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
λ x2 x3 .
cfv
(
cv
x3
)
(
cv
x2
)
)
)
)
)
)
)
)
(proof)
Theorem
df_disoa
:
wceq
cdia
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cmpt
(
λ x2 .
crab
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
crab
(
λ x3 .
wbr
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctrl
)
)
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cple
)
)
(
λ x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
)
)
)
)
(proof)
Theorem
df_dvech
:
wceq
cdvh
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
clh
)
(
λ x1 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cxp
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x2 x3 .
cxp
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
)
(
λ x2 x3 .
cxp
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
)
(
λ x2 x3 .
cop
(
ccom
(
cfv
(
cv
x2
)
c1st
)
(
cfv
(
cv
x3
)
c1st
)
)
(
cmpt
(
λ x4 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
λ x4 .
ccom
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
c2nd
)
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x3
)
c2nd
)
)
)
)
)
)
)
(
cop
(
cfv
cnx
csca
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cedring
)
)
)
)
(
csn
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
(
λ x2 x3 .
cxp
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cltrn
)
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
ctendo
)
)
)
(
λ x2 x3 .
cop
(
cfv
(
cfv
(
cv
x3
)
c1st
)
(
cv
x2
)
)
(
ccom
(
cv
x2
)
(
cfv
(
cv
x3
)
c2nd
)
)
)
)
)
)
)
)
)
(proof)