Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrJGW..
/
32edc..
PUV8f..
/
5dfcd..
vout
PrJGW..
/
bb6e0..
1.98 bars
TMM1Q..
/
ab25f..
ownership of
17cd1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUh9..
/
461f5..
ownership of
20fea..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG4J..
/
b8be8..
ownership of
e34e9..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRKo..
/
86499..
ownership of
a65ad..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXsG..
/
21d93..
ownership of
ae6de..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPAN..
/
f8c8d..
ownership of
2e669..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHaZ..
/
8acd7..
ownership of
0f09c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZ7F..
/
8de15..
ownership of
40815..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFCo..
/
fb63d..
ownership of
90dd1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUE5..
/
44dc1..
ownership of
e09d5..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMY8E..
/
fdeae..
ownership of
4b2cb..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYgu..
/
78831..
ownership of
975b0..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMP7P..
/
b9b6a..
ownership of
8100b..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRgb..
/
53107..
ownership of
ef840..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJLL..
/
25aff..
ownership of
75cd2..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQvu..
/
77358..
ownership of
5c468..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSQP..
/
ab0a6..
ownership of
ef6b7..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW3k..
/
876ed..
ownership of
1cc87..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMV22..
/
351b3..
ownership of
9b61a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbPN..
/
08e9b..
ownership of
cc40e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMX9R..
/
2e37b..
ownership of
1b56f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYLv..
/
9af91..
ownership of
a373a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLRQ..
/
504da..
ownership of
527b1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUQa..
/
d753d..
ownership of
d34b0..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJji..
/
9a144..
ownership of
3f3ae..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJRp..
/
1f52b..
ownership of
c6b75..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSoB..
/
fe131..
ownership of
a7402..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVbg..
/
10cdb..
ownership of
badc6..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQCp..
/
bc7de..
ownership of
c2196..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcKe..
/
c4d67..
ownership of
33319..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLKa..
/
d1fee..
ownership of
af7b1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSZx..
/
9a04b..
ownership of
207c6..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRMJ..
/
9c2ad..
ownership of
980fb..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLZS..
/
c8e48..
ownership of
a9417..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMd3..
/
67b65..
ownership of
d1d50..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFou..
/
9b53b..
ownership of
1cae6..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGEo..
/
25822..
ownership of
a6d01..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMKG..
/
2fb92..
ownership of
8fb4d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRof..
/
a2977..
ownership of
8c884..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYNn..
/
8f269..
ownership of
a1cd4..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMY9T..
/
4d5ff..
ownership of
7c3c8..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUUE..
/
52ec3..
ownership of
2f5fb..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHmU..
/
2bbae..
ownership of
1ba04..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMH7P..
/
f65bb..
ownership of
b53e6..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHvh..
/
38dd3..
ownership of
5571d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLWR..
/
4cd91..
ownership of
e35c4..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMczB..
/
57aa5..
ownership of
d27f1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEz5..
/
3c827..
ownership of
a0b53..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMdV..
/
c2346..
ownership of
9a5fa..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYKq..
/
9f5a7..
ownership of
e6652..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSR5..
/
21b20..
ownership of
0b1f3..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcYP..
/
c3153..
ownership of
38508..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWF5..
/
4d921..
ownership of
52c1f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXk6..
/
1556b..
ownership of
1162c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSpb..
/
ae08c..
ownership of
cd821..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKtn..
/
a6d86..
ownership of
0596e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLsb..
/
9a332..
ownership of
b5f6e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEkN..
/
a2079..
ownership of
79524..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNGE..
/
c7656..
ownership of
8cdbd..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUUg..
/
4c462..
ownership of
46b31..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRuA..
/
9a354..
ownership of
7804e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMY6c..
/
78f86..
ownership of
ec957..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbkH..
/
efaad..
ownership of
b0d1f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKSR..
/
89c9b..
ownership of
94366..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdaD..
/
b83b2..
ownership of
914f6..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSmd..
/
b167f..
ownership of
fe589..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaPK..
/
ee55c..
ownership of
4aa6c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcfs..
/
76239..
ownership of
830d3..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVoE..
/
cdb52..
ownership of
e2a7c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWZ7..
/
31b64..
ownership of
bfc9d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMM5K..
/
77655..
ownership of
d613a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWGk..
/
03b37..
ownership of
8f4ea..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdxq..
/
24fee..
ownership of
8123e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVz8..
/
79c01..
ownership of
420ed..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcqR..
/
0d712..
ownership of
60acf..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVVj..
/
ba18a..
ownership of
27707..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHeX..
/
59949..
ownership of
c95dd..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMH5L..
/
e5533..
ownership of
38b5f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJza..
/
761d1..
ownership of
1bfa8..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNwz..
/
f5132..
ownership of
65ca8..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLaW..
/
8c480..
ownership of
bba79..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMS9E..
/
abfcc..
ownership of
7a150..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG2q..
/
f3da0..
ownership of
64fce..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQhg..
/
7ac5b..
ownership of
019eb..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGLg..
/
a9eae..
ownership of
de13a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMH5Q..
/
a87bf..
ownership of
2e5d0..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWDY..
/
c4b5b..
ownership of
8e808..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTNk..
/
e4627..
ownership of
e122f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKQZ..
/
bda1a..
ownership of
0c0ca..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNAA..
/
809bd..
ownership of
f82ff..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PURWH..
/
e37a5..
doc published by
PrGxv..
Param
and
:
ο
→
ο
→
ο
Param
244aa..
:
(
ι
→
ι
→
ο
) →
ο
Param
98f68..
:
(
ι
→
ι
→
ο
) →
ο
Param
5d0c6..
:
(
ι
→
ι
→
ο
) →
ο
Param
True
:
ο
Definition
0c0ca..
:=
λ x0 :
ι →
ι → ο
.
and
(
and
(
and
(
244aa..
x0
)
(
98f68..
x0
)
)
(
5d0c6..
x0
)
)
True
Param
39ffe..
:
(
ι
→
ι
→
ο
) →
ο
Param
548f8..
:
(
ι
→
ι
→
ο
) →
ο
Param
29aed..
:
(
ι
→
ι
→
ο
) →
ο
Definition
8e808..
:=
λ x0 :
ι →
ι → ο
.
and
(
and
(
and
(
39ffe..
x0
)
(
548f8..
x0
)
)
(
29aed..
x0
)
)
True
Definition
de13a..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Param
57d6a..
:
ι
→
ι
→
ι
Param
67ee8..
:
ι
Param
27862..
:
ι
Param
bcddf..
:
ι
→
(
ι
→
ι
) →
ι
Param
1f2c4..
:
ι
Param
25ca3..
:
ι
Param
62f06..
:
ι
Param
5b8fe..
:
ι
Definition
60acf..
:=
57d6a..
67ee8..
(
57d6a..
27862..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
5b8fe..
)
)
)
)
Param
7a0ec..
:
ι
Definition
64fce..
:=
bcddf..
1f2c4..
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
)
(
λ x1 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x2 .
57d6a..
(
57d6a..
x1
x2
)
x2
)
)
)
)
Definition
bba79..
:=
λ x0 :
ι →
ι → ο
.
and
(
0c0ca..
x0
)
(
x0
de13a..
60acf..
)
Param
d478c..
:
(
ι
→
ι
→
ο
) →
(
ι
→
ι
→
ο
) →
ι
→
ο
Conjecture
98a99..
:
∀ x0 x1 :
ι →
ι → ο
.
0c0ca..
x0
⟶
8e808..
x1
⟶
d478c..
x0
x1
60acf..
Param
6fe8d..
:
(
ι
→
ι
→
ο
) →
(
ι
→
ι
→
ο
) →
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ο
Param
5c39b..
:
ι
→
ι
→
ο
Conjecture
7abd2..
:
∀ x0 x1 :
ι →
ι → ο
.
0c0ca..
x0
⟶
8e808..
x1
⟶
6fe8d..
x0
x1
5c39b..
64fce..
60acf..
Definition
1bfa8..
:=
λ x0 :
ι →
ι → ο
.
and
(
8e808..
x0
)
(
x0
de13a..
64fce..
)
Definition
c95dd..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
60acf..
:=
57d6a..
67ee8..
(
57d6a..
27862..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
5b8fe..
)
)
)
)
Param
f3baa..
:
ι
Definition
8123e..
:=
bcddf..
1f2c4..
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
)
(
λ x1 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x2 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x3 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x4 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
x1
x2
)
x3
)
)
(
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
x1
x3
)
x4
)
)
(
57d6a..
(
57d6a..
x1
x2
)
x4
)
)
)
)
)
)
)
)
)
)
Definition
d613a..
:=
λ x0 :
ι →
ι → ο
.
and
(
bba79..
x0
)
(
x0
c95dd..
60acf..
)
Conjecture
9b592..
:
∀ x0 x1 :
ι →
ι → ο
.
bba79..
x0
⟶
1bfa8..
x1
⟶
d478c..
x0
x1
60acf..
Conjecture
53ae6..
:
∀ x0 x1 :
ι →
ι → ο
.
bba79..
x0
⟶
1bfa8..
x1
⟶
6fe8d..
x0
x1
5c39b..
8123e..
60acf..
Definition
e2a7c..
:=
λ x0 :
ι →
ι → ο
.
and
(
1bfa8..
x0
)
(
x0
c95dd..
8123e..
)
Definition
4aa6c..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
914f6..
:=
57d6a..
67ee8..
(
57d6a..
27862..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
)
)
)
Param
62b32..
:
ι
Param
0eacd..
:
ι
Definition
b0d1f..
:=
bcddf..
1f2c4..
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
)
(
λ x1 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x2 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x3 .
57d6a..
(
57d6a..
62b32..
(
57d6a..
(
57d6a..
x1
x2
)
x3
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
x0
)
x2
)
x3
)
)
)
)
)
Definition
7804e..
:=
λ x0 :
ι →
ι → ο
.
and
(
d613a..
x0
)
(
x0
4aa6c..
914f6..
)
Conjecture
b9046..
:
∀ x0 x1 :
ι →
ι → ο
.
d613a..
x0
⟶
e2a7c..
x1
⟶
d478c..
x0
x1
914f6..
Conjecture
a9ae7..
:
∀ x0 x1 :
ι →
ι → ο
.
d613a..
x0
⟶
e2a7c..
x1
⟶
6fe8d..
x0
x1
5c39b..
b0d1f..
914f6..
Definition
8cdbd..
:=
λ x0 :
ι →
ι → ο
.
and
(
e2a7c..
x0
)
(
x0
4aa6c..
b0d1f..
)
Definition
b5f6e..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Param
3cd3c..
:
ι
Param
cb931..
:
ι
Definition
cd821..
:=
57d6a..
3cd3c..
(
57d6a..
cb931..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
)
(
λ x1 .
57d6a..
(
57d6a..
de13a..
x0
)
(
57d6a..
(
57d6a..
4aa6c..
x0
)
x1
)
)
)
)
)
)
Param
c85c4..
:
ι
Definition
52c1f..
:=
bcddf..
1f2c4..
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
)
(
λ x1 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x2 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x3 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
x1
x2
)
x2
)
)
x3
)
)
(
λ x4 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
x0
)
x2
)
x2
)
)
x3
)
)
(
λ x5 .
57d6a..
x5
(
57d6a..
(
57d6a..
c85c4..
x0
)
x2
)
)
)
)
)
)
)
Definition
0b1f3..
:=
λ x0 :
ι →
ι → ο
.
and
(
7804e..
x0
)
(
x0
b5f6e..
cd821..
)
Conjecture
142d8..
:
∀ x0 x1 :
ι →
ι → ο
.
7804e..
x0
⟶
8cdbd..
x1
⟶
d478c..
x0
x1
cd821..
Conjecture
c382f..
:
∀ x0 x1 :
ι →
ι → ο
.
7804e..
x0
⟶
8cdbd..
x1
⟶
6fe8d..
x0
x1
5c39b..
52c1f..
cd821..
Definition
9a5fa..
:=
λ x0 :
ι →
ι → ο
.
and
(
8cdbd..
x0
)
(
x0
b5f6e..
52c1f..
)
Definition
d27f1..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
5571d..
:=
57d6a..
67ee8..
(
57d6a..
27862..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
27862..
(
bcddf..
1f2c4..
(
λ x1 .
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
(
57d6a..
(
57d6a..
62f06..
x0
)
x1
)
)
5b8fe..
)
)
)
)
)
)
Definition
1ba04..
:=
bcddf..
1f2c4..
(
λ x0 .
bcddf..
1f2c4..
(
λ x1 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
x1
)
)
)
(
λ x2 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x3 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x4 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
x1
)
(
57d6a..
x2
x3
)
)
(
57d6a..
x2
x4
)
)
)
(
57d6a..
(
57d6a..
(
57d6a..
0eacd..
x0
)
x3
)
x4
)
)
)
)
)
)
)
)
Definition
7c3c8..
:=
λ x0 :
ι →
ι → ο
.
and
(
0b1f3..
x0
)
(
x0
d27f1..
5571d..
)
Conjecture
1c10a..
:
∀ x0 x1 :
ι →
ι → ο
.
0b1f3..
x0
⟶
9a5fa..
x1
⟶
d478c..
x0
x1
5571d..
Conjecture
e0608..
:
∀ x0 x1 :
ι →
ι → ο
.
0b1f3..
x0
⟶
9a5fa..
x1
⟶
6fe8d..
x0
x1
5c39b..
1ba04..
5571d..
Definition
8c884..
:=
λ x0 :
ι →
ι → ο
.
and
(
9a5fa..
x0
)
(
x0
d27f1..
1ba04..
)
Definition
a6d01..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
a7402..
:=
57d6a..
67ee8..
(
57d6a..
27862..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
x0
)
)
)
5b8fe..
)
)
)
)
Definition
d1d50..
:=
bcddf..
1f2c4..
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
x0
)
)
)
)
(
λ x1 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x2 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x3 .
57d6a..
(
57d6a..
(
57d6a..
0eacd..
x0
)
(
57d6a..
(
57d6a..
x1
x2
)
x3
)
)
(
57d6a..
(
57d6a..
x1
x3
)
x2
)
)
)
)
)
)
)
Definition
980fb..
:=
λ x0 :
ι →
ι → ο
.
and
(
7c3c8..
x0
)
(
x0
a6d01..
a7402..
)
Conjecture
f604f..
:
∀ x0 x1 :
ι →
ι → ο
.
7c3c8..
x0
⟶
8c884..
x1
⟶
d478c..
x0
x1
a7402..
Conjecture
2a8a4..
:
∀ x0 x1 :
ι →
ι → ο
.
7c3c8..
x0
⟶
8c884..
x1
⟶
6fe8d..
x0
x1
5c39b..
d1d50..
a7402..
Definition
af7b1..
:=
λ x0 :
ι →
ι → ο
.
and
(
8c884..
x0
)
(
x0
a6d01..
d1d50..
)
Definition
c2196..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
a7402..
:=
57d6a..
67ee8..
(
57d6a..
27862..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
x0
)
)
)
5b8fe..
)
)
)
)
Definition
3f3ae..
:=
bcddf..
1f2c4..
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
x0
)
)
)
)
(
λ x1 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x2 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x3 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x4 .
57d6a..
(
57d6a..
(
57d6a..
0eacd..
x0
)
(
57d6a..
(
57d6a..
x1
(
57d6a..
(
57d6a..
x1
x2
)
x3
)
)
x4
)
)
(
57d6a..
(
57d6a..
x1
x2
)
(
57d6a..
(
57d6a..
x1
x3
)
x4
)
)
)
)
)
)
)
)
)
)
Definition
527b1..
:=
λ x0 :
ι →
ι → ο
.
and
(
980fb..
x0
)
(
x0
c2196..
a7402..
)
Conjecture
a8c34..
:
∀ x0 x1 :
ι →
ι → ο
.
980fb..
x0
⟶
af7b1..
x1
⟶
d478c..
x0
x1
a7402..
Conjecture
c1d7c..
:
∀ x0 x1 :
ι →
ι → ο
.
980fb..
x0
⟶
af7b1..
x1
⟶
6fe8d..
x0
x1
5c39b..
3f3ae..
a7402..
Definition
1b56f..
:=
λ x0 :
ι →
ι → ο
.
and
(
af7b1..
x0
)
(
x0
c2196..
3f3ae..
)
Definition
9b61a..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
ef6b7..
:=
57d6a..
67ee8..
(
57d6a..
27862..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
(
57d6a..
(
57d6a..
62f06..
(
57d6a..
(
57d6a..
62f06..
x0
)
x0
)
)
5b8fe..
)
)
)
)
)
Definition
75cd2..
:=
bcddf..
1f2c4..
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
)
(
λ x1 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
x0
)
)
)
(
λ x2 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x3 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x4 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
x1
x3
)
x4
)
)
(
57d6a..
(
57d6a..
x1
(
57d6a..
x2
x3
)
)
(
57d6a..
x2
x4
)
)
)
)
)
)
)
)
)
Definition
8100b..
:=
λ x0 :
ι →
ι → ο
.
and
(
527b1..
x0
)
(
x0
9b61a..
ef6b7..
)
Conjecture
66cc8..
:
∀ x0 x1 :
ι →
ι → ο
.
527b1..
x0
⟶
1b56f..
x1
⟶
d478c..
x0
x1
ef6b7..
Conjecture
e7dc6..
:
∀ x0 x1 :
ι →
ι → ο
.
527b1..
x0
⟶
1b56f..
x1
⟶
6fe8d..
x0
x1
5c39b..
75cd2..
ef6b7..
Definition
4b2cb..
:=
λ x0 :
ι →
ι → ο
.
and
(
1b56f..
x0
)
(
x0
9b61a..
75cd2..
)
Definition
90dd1..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
0f09c..
:=
57d6a..
67ee8..
(
57d6a..
27862..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
x0
)
)
)
(
57d6a..
(
57d6a..
62f06..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
x0
)
)
)
5b8fe..
)
)
)
)
)
Definition
ae6de..
:=
bcddf..
1f2c4..
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
x0
)
)
)
)
(
λ x1 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
(
57d6a..
(
57d6a..
62f06..
x0
)
x0
)
)
)
)
(
λ x2 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x3 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x4 .
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x5 .
57d6a..
(
57d6a..
(
57d6a..
0eacd..
x0
)
(
57d6a..
(
57d6a..
x1
x3
)
(
57d6a..
(
57d6a..
x2
x4
)
x5
)
)
)
(
57d6a..
(
57d6a..
x2
(
57d6a..
(
57d6a..
x1
x3
)
x4
)
)
(
57d6a..
(
57d6a..
x1
x3
)
x5
)
)
)
)
)
)
)
)
)
)
)
Definition
e34e9..
:=
λ x0 :
ι →
ι → ο
.
and
(
8100b..
x0
)
(
x0
90dd1..
0f09c..
)
Conjecture
46c2b..
:
∀ x0 x1 :
ι →
ι → ο
.
8100b..
x0
⟶
4b2cb..
x1
⟶
d478c..
x0
x1
0f09c..
Conjecture
4c81c..
:
∀ x0 x1 :
ι →
ι → ο
.
8100b..
x0
⟶
4b2cb..
x1
⟶
6fe8d..
x0
x1
5c39b..
ae6de..
0f09c..
Definition
17cd1..
:=
λ x0 :
ι →
ι → ο
.
and
(
4b2cb..
x0
)
(
x0
90dd1..
ae6de..
)
Definition
e34e9..
:=
e34e9..
Definition
17cd1..
:=
17cd1..