Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrA5c..
/
1f053..
PUdwZ..
/
60442..
vout
PrA5c..
/
55a8e..
0.00 bars
TMGMo..
/
97608..
ownership of
18bab..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMPrQ..
/
f5755..
ownership of
2f03f..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMQ1i..
/
df23e..
ownership of
afaa8..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMHJc..
/
8b26c..
ownership of
13fb7..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMNVJ..
/
45981..
ownership of
8ae56..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMbXP..
/
74616..
ownership of
e8139..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMYTF..
/
598fe..
ownership of
d9e97..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMNds..
/
62d45..
ownership of
d7fe2..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMQJB..
/
2482b..
ownership of
79b65..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMUDF..
/
fd0b3..
ownership of
b996e..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMY9m..
/
656c9..
ownership of
f731c..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMG1Q..
/
a3010..
ownership of
92ea8..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMWKE..
/
048f1..
ownership of
6b0ad..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
TMTsk..
/
402d3..
ownership of
9ece6..
as prop with payaddr
Pr4zB..
rightscost 0.00 controlledby
Pr4zB..
upto 0
PUbsN..
/
12431..
doc published by
Pr4zB..
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Known
TwoRamseyProp_3_4_9
TwoRamseyProp_3_4_9
:
TwoRamseyProp
3
4
9
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Param
nat_p
nat_p
:
ι
→
ο
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
6b0ad..
:
add_nat
u9
u1
=
u10
(proof)
Definition
u11
:=
ordsucc
u10
Known
nat_1
nat_1
:
nat_p
1
Theorem
f731c..
:
add_nat
u9
u2
=
u11
(proof)
Definition
u12
:=
ordsucc
u11
Known
nat_2
nat_2
:
nat_p
2
Theorem
79b65..
:
add_nat
u9
u3
=
u12
(proof)
Definition
u13
:=
ordsucc
u12
Known
nat_3
nat_3
:
nat_p
3
Theorem
d9e97..
:
add_nat
u9
u4
=
u13
(proof)
Definition
u14
:=
ordsucc
u13
Known
nat_4
nat_4
:
nat_p
4
Theorem
8ae56..
:
add_nat
u9
u5
=
u14
(proof)
Definition
u15
:=
ordsucc
u14
Param
TwoRamseyProp_atleastp
:
ι
→
ι
→
ι
→
ο
Known
97c7e..
:
∀ x0 x1 x2 x3 .
nat_p
x2
⟶
nat_p
x3
⟶
TwoRamseyProp_atleastp
(
ordsucc
x0
)
x1
x2
⟶
TwoRamseyProp_atleastp
x0
(
ordsucc
x1
)
x3
⟶
TwoRamseyProp
(
ordsucc
x0
)
(
ordsucc
x1
)
(
ordsucc
(
add_nat
x2
x3
)
)
Known
nat_9
nat_9
:
nat_p
9
Known
nat_5
nat_5
:
nat_p
5
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Known
TwoRamseyProp_atleastp_atleastp
:
∀ x0 x1 x2 x3 x4 .
TwoRamseyProp
x0
x2
x4
⟶
atleastp
x1
x0
⟶
atleastp
x3
x2
⟶
TwoRamseyProp_atleastp
x1
x3
x4
Known
atleastp_ref
:
∀ x0 .
atleastp
x0
x0
Known
95eb4..
:
∀ x0 .
TwoRamseyProp_atleastp
2
x0
x0
Theorem
TwoRamseyProp_u3_u5_u15
:
TwoRamseyProp
u3
u5
u15
(proof)
Known
46dcf..
:
∀ x0 x1 x2 x3 .
atleastp
x2
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Definition
u16
:=
ordsucc
u15
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Param
Subq
Subq
:
ι
→
ι
→
ο
Known
Subq_atleastp
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Param
exp_nat
exp_nat
:
ι
→
ι
→
ι
Known
db1de..
:
exp_nat
2
4
=
16
Known
293d3..
:
∀ x0 .
nat_p
x0
⟶
equip
(
prim4
x0
)
(
exp_nat
2
x0
)
Theorem
TwoRamseyProp_3_5_Power_4
TwoRamseyProp_3_5_Power_4
:
TwoRamseyProp
3
5
(
prim4
4
)
(proof)