Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr48e..
/
ae0d6..
PUTk7..
/
1c879..
vout
Pr48e..
/
42632..
0.10 bars
TMMTk..
/
b03b5..
ownership of
63251..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJjZ..
/
83563..
ownership of
ee228..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMP4K..
/
d0fe8..
ownership of
0dc08..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZv2..
/
87013..
ownership of
f2136..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMH2..
/
5a616..
ownership of
41f73..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJaA..
/
4dcac..
ownership of
100f1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWZr..
/
20f18..
ownership of
57be9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGvL..
/
829c5..
ownership of
489f5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYR2..
/
af595..
ownership of
b9dfc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPWE..
/
b3fac..
ownership of
c83b3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLv2..
/
01d24..
ownership of
2479e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLvW..
/
1ebf1..
ownership of
6c14a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTsh..
/
877cc..
ownership of
0aed7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWwC..
/
2cb3a..
ownership of
b47e0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMG6t..
/
650ea..
ownership of
32a2e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTri..
/
39231..
ownership of
bc96d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJQ9..
/
e9109..
ownership of
b77c8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVoF..
/
84557..
ownership of
c1210..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVg5..
/
78b39..
ownership of
bbf73..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEmg..
/
0bd9b..
ownership of
73bca..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPFn..
/
40cc3..
ownership of
b11e8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRuA..
/
21245..
ownership of
f48e2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMW4r..
/
18689..
ownership of
b68b8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQri..
/
11907..
ownership of
4f4b6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXqy..
/
9cd4f..
ownership of
9f872..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa9k..
/
b8030..
ownership of
19b4b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKc4..
/
ead24..
ownership of
890d5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc1J..
/
f098e..
ownership of
15453..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUMr..
/
a8721..
ownership of
f3764..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX9X..
/
4e52c..
ownership of
d5d21..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc2W..
/
70bed..
ownership of
f7184..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXME..
/
3c39b..
ownership of
a74ba..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHQN..
/
f067b..
ownership of
d739e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU2C..
/
fcadd..
ownership of
4b17b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbAk..
/
f3db4..
ownership of
1fc24..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb1k..
/
fc384..
ownership of
d89cf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUVbZ..
/
6190f..
doc published by
PrCmT..
Known
df_ifs__df_cgr3__df_fs__df_segle__df_outsideof__df_line2__df_ray__df_lines2__df_fwddif__df_fwddifn__df_hf__df_fne__df_3nand__df_gcdOLD__ax_prv1__ax_prv2__ax_prv3__df_ssb
:
∀ x0 : ο .
(
wceq
cifs
(
copab
(
λ x1 x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
wrex
(
λ x11 .
w3a
(
wceq
(
cv
x1
)
(
cop
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x6
)
(
cv
x7
)
)
)
)
(
wceq
(
cv
x2
)
(
cop
(
cop
(
cv
x8
)
(
cv
x9
)
)
(
cop
(
cv
x10
)
(
cv
x11
)
)
)
)
(
w3a
(
wa
(
wbr
(
cv
x5
)
(
cop
(
cv
x4
)
(
cv
x6
)
)
cbtwn
)
(
wbr
(
cv
x9
)
(
cop
(
cv
x8
)
(
cv
x10
)
)
cbtwn
)
)
(
wa
(
wbr
(
cop
(
cv
x4
)
(
cv
x6
)
)
(
cop
(
cv
x8
)
(
cv
x10
)
)
ccgr
)
(
wbr
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cop
(
cv
x9
)
(
cv
x10
)
)
ccgr
)
)
(
wa
(
wbr
(
cop
(
cv
x4
)
(
cv
x7
)
)
(
cop
(
cv
x8
)
(
cv
x11
)
)
ccgr
)
(
wbr
(
cop
(
cv
x6
)
(
cv
x7
)
)
(
cop
(
cv
x10
)
(
cv
x11
)
)
ccgr
)
)
)
)
(
λ x11 .
cfv
(
cv
x3
)
cee
)
)
(
λ x10 .
cfv
(
cv
x3
)
cee
)
)
(
λ x9 .
cfv
(
cv
x3
)
cee
)
)
(
λ x8 .
cfv
(
cv
x3
)
cee
)
)
(
λ x7 .
cfv
(
cv
x3
)
cee
)
)
(
λ x6 .
cfv
(
cv
x3
)
cee
)
)
(
λ x5 .
cfv
(
cv
x3
)
cee
)
)
(
λ x4 .
cfv
(
cv
x3
)
cee
)
)
(
λ x3 .
cn
)
)
)
⟶
wceq
ccgr3
(
copab
(
λ x1 x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
w3a
(
wceq
(
cv
x1
)
(
cop
(
cv
x4
)
(
cop
(
cv
x5
)
(
cv
x6
)
)
)
)
(
wceq
(
cv
x2
)
(
cop
(
cv
x7
)
(
cop
(
cv
x8
)
(
cv
x9
)
)
)
)
(
w3a
(
wbr
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x7
)
(
cv
x8
)
)
ccgr
)
(
wbr
(
cop
(
cv
x4
)
(
cv
x6
)
)
(
cop
(
cv
x7
)
(
cv
x9
)
)
ccgr
)
(
wbr
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cop
(
cv
x8
)
(
cv
x9
)
)
ccgr
)
)
)
(
λ x9 .
cfv
(
cv
x3
)
cee
)
)
(
λ x8 .
cfv
(
cv
x3
)
cee
)
)
(
λ x7 .
cfv
(
cv
x3
)
cee
)
)
(
λ x6 .
cfv
(
cv
x3
)
cee
)
)
(
λ x5 .
cfv
(
cv
x3
)
cee
)
)
(
λ x4 .
cfv
(
cv
x3
)
cee
)
)
(
λ x3 .
cn
)
)
)
⟶
wceq
cfs
(
copab
(
λ x1 x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
wrex
(
λ x11 .
w3a
(
wceq
(
cv
x1
)
(
cop
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x6
)
(
cv
x7
)
)
)
)
(
wceq
(
cv
x2
)
(
cop
(
cop
(
cv
x8
)
(
cv
x9
)
)
(
cop
(
cv
x10
)
(
cv
x11
)
)
)
)
(
w3a
(
wbr
(
cv
x4
)
(
cop
(
cv
x5
)
(
cv
x6
)
)
ccolin
)
(
wbr
(
cop
(
cv
x4
)
(
cop
(
cv
x5
)
(
cv
x6
)
)
)
(
cop
(
cv
x8
)
(
cop
(
cv
x9
)
(
cv
x10
)
)
)
ccgr3
)
(
wa
(
wbr
(
cop
(
cv
x4
)
(
cv
x7
)
)
(
cop
(
cv
x8
)
(
cv
x11
)
)
ccgr
)
(
wbr
(
cop
(
cv
x5
)
(
cv
x7
)
)
(
cop
(
cv
x9
)
(
cv
x11
)
)
ccgr
)
)
)
)
(
λ x11 .
cfv
(
cv
x3
)
cee
)
)
(
λ x10 .
cfv
(
cv
x3
)
cee
)
)
(
λ x9 .
cfv
(
cv
x3
)
cee
)
)
(
λ x8 .
cfv
(
cv
x3
)
cee
)
)
(
λ x7 .
cfv
(
cv
x3
)
cee
)
)
(
λ x6 .
cfv
(
cv
x3
)
cee
)
)
(
λ x5 .
cfv
(
cv
x3
)
cee
)
)
(
λ x4 .
cfv
(
cv
x3
)
cee
)
)
(
λ x3 .
cn
)
)
)
⟶
wceq
csegle
(
copab
(
λ x1 x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
w3a
(
wceq
(
cv
x1
)
(
cop
(
cv
x4
)
(
cv
x5
)
)
)
(
wceq
(
cv
x2
)
(
cop
(
cv
x6
)
(
cv
x7
)
)
)
(
wrex
(
λ x8 .
wa
(
wbr
(
cv
x8
)
(
cop
(
cv
x6
)
(
cv
x7
)
)
cbtwn
)
(
wbr
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x6
)
(
cv
x8
)
)
ccgr
)
)
(
λ x8 .
cfv
(
cv
x3
)
cee
)
)
)
(
λ x7 .
cfv
(
cv
x3
)
cee
)
)
(
λ x6 .
cfv
(
cv
x3
)
cee
)
)
(
λ x5 .
cfv
(
cv
x3
)
cee
)
)
(
λ x4 .
cfv
(
cv
x3
)
cee
)
)
(
λ x3 .
cn
)
)
)
⟶
wceq
coutsideof
(
cdif
ccolin
cbtwn
)
⟶
wceq
cline2
(
coprab
(
λ x1 x2 x3 .
wrex
(
λ x4 .
wa
(
w3a
(
wcel
(
cv
x1
)
(
cfv
(
cv
x4
)
cee
)
)
(
wcel
(
cv
x2
)
(
cfv
(
cv
x4
)
cee
)
)
(
wne
(
cv
x1
)
(
cv
x2
)
)
)
(
wceq
(
cv
x3
)
(
cec
(
cop
(
cv
x1
)
(
cv
x2
)
)
(
ccnv
ccolin
)
)
)
)
(
λ x4 .
cn
)
)
)
⟶
wceq
cray
(
coprab
(
λ x1 x2 x3 .
wrex
(
λ x4 .
wa
(
w3a
(
wcel
(
cv
x1
)
(
cfv
(
cv
x4
)
cee
)
)
(
wcel
(
cv
x2
)
(
cfv
(
cv
x4
)
cee
)
)
(
wne
(
cv
x1
)
(
cv
x2
)
)
)
(
wceq
(
cv
x3
)
(
crab
(
λ x5 .
wbr
(
cv
x1
)
(
cop
(
cv
x2
)
(
cv
x5
)
)
coutsideof
)
(
λ x5 .
cfv
(
cv
x4
)
cee
)
)
)
)
(
λ x4 .
cn
)
)
)
⟶
wceq
clines2
(
crn
cline2
)
⟶
wceq
cfwddif
(
cmpt
(
λ x1 .
co
cc
cc
cpm
)
(
λ x1 .
cmpt
(
λ x2 .
crab
(
λ x3 .
wcel
(
co
(
cv
x3
)
c1
caddc
)
(
cdm
(
cv
x1
)
)
)
(
λ x3 .
cdm
(
cv
x1
)
)
)
(
λ x2 .
co
(
cfv
(
co
(
cv
x2
)
c1
caddc
)
(
cv
x1
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cmin
)
)
)
⟶
wceq
cfwddifn
(
cmpt2
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
co
cc
cc
cpm
)
(
λ x1 x2 .
cmpt
(
λ x3 .
crab
(
λ x4 .
wral
(
λ x5 .
wcel
(
co
(
cv
x4
)
(
cv
x5
)
caddc
)
(
cdm
(
cv
x2
)
)
)
(
λ x5 .
co
cc0
(
cv
x1
)
cfz
)
)
(
λ x4 .
cc
)
)
(
λ x3 .
csu
(
co
cc0
(
cv
x1
)
cfz
)
(
λ x4 .
co
(
co
(
cv
x1
)
(
cv
x4
)
cbc
)
(
co
(
co
(
cneg
c1
)
(
co
(
cv
x1
)
(
cv
x4
)
cmin
)
cexp
)
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
caddc
)
(
cv
x2
)
)
cmul
)
cmul
)
)
)
)
⟶
wceq
chf
(
cuni
(
cima
cr1
com
)
)
⟶
wceq
cfne
(
copab
(
λ x1 x2 .
wa
(
wceq
(
cuni
(
cv
x1
)
)
(
cuni
(
cv
x2
)
)
)
(
wral
(
λ x3 .
wss
(
cv
x3
)
(
cuni
(
cin
(
cv
x2
)
(
cpw
(
cv
x3
)
)
)
)
)
(
λ x3 .
cv
x1
)
)
)
)
⟶
(
∀ x1 x2 x3 : ο .
wb
(
w3nand
x1
x2
x3
)
(
x1
⟶
x2
⟶
wn
x3
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cgcdOLD
x1
x2
)
(
csup
(
crab
(
λ x3 .
wa
(
wcel
(
co
x1
(
cv
x3
)
cdiv
)
cn
)
(
wcel
(
co
x2
(
cv
x3
)
cdiv
)
cn
)
)
(
λ x3 .
cn
)
)
cn
clt
)
)
⟶
(
∀ x1 : ο .
x1
⟶
cprvb
x1
)
⟶
(
∀ x1 x2 : ο .
cprvb
(
x1
⟶
x2
)
⟶
cprvb
x1
⟶
cprvb
x2
)
⟶
(
∀ x1 : ο .
cprvb
x1
⟶
cprvb
(
cprvb
x1
)
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 .
wb
(
wssb
x1
x2
)
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x2
)
⟶
∀ x4 .
wceq
(
cv
x4
)
(
cv
x3
)
⟶
x1
x4
)
)
⟶
x0
)
⟶
x0
Theorem
df_ifs
:
wceq
cifs
(
copab
(
λ x0 x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
w3a
(
wceq
(
cv
x0
)
(
cop
(
cop
(
cv
x3
)
(
cv
x4
)
)
(
cop
(
cv
x5
)
(
cv
x6
)
)
)
)
(
wceq
(
cv
x1
)
(
cop
(
cop
(
cv
x7
)
(
cv
x8
)
)
(
cop
(
cv
x9
)
(
cv
x10
)
)
)
)
(
w3a
(
wa
(
wbr
(
cv
x4
)
(
cop
(
cv
x3
)
(
cv
x5
)
)
cbtwn
)
(
wbr
(
cv
x8
)
(
cop
(
cv
x7
)
(
cv
x9
)
)
cbtwn
)
)
(
wa
(
wbr
(
cop
(
cv
x3
)
(
cv
x5
)
)
(
cop
(
cv
x7
)
(
cv
x9
)
)
ccgr
)
(
wbr
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x8
)
(
cv
x9
)
)
ccgr
)
)
(
wa
(
wbr
(
cop
(
cv
x3
)
(
cv
x6
)
)
(
cop
(
cv
x7
)
(
cv
x10
)
)
ccgr
)
(
wbr
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cop
(
cv
x9
)
(
cv
x10
)
)
ccgr
)
)
)
)
(
λ x10 .
cfv
(
cv
x2
)
cee
)
)
(
λ x9 .
cfv
(
cv
x2
)
cee
)
)
(
λ x8 .
cfv
(
cv
x2
)
cee
)
)
(
λ x7 .
cfv
(
cv
x2
)
cee
)
)
(
λ x6 .
cfv
(
cv
x2
)
cee
)
)
(
λ x5 .
cfv
(
cv
x2
)
cee
)
)
(
λ x4 .
cfv
(
cv
x2
)
cee
)
)
(
λ x3 .
cfv
(
cv
x2
)
cee
)
)
(
λ x2 .
cn
)
)
)
(proof)
Theorem
df_cgr3
:
wceq
ccgr3
(
copab
(
λ x0 x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
w3a
(
wceq
(
cv
x0
)
(
cop
(
cv
x3
)
(
cop
(
cv
x4
)
(
cv
x5
)
)
)
)
(
wceq
(
cv
x1
)
(
cop
(
cv
x6
)
(
cop
(
cv
x7
)
(
cv
x8
)
)
)
)
(
w3a
(
wbr
(
cop
(
cv
x3
)
(
cv
x4
)
)
(
cop
(
cv
x6
)
(
cv
x7
)
)
ccgr
)
(
wbr
(
cop
(
cv
x3
)
(
cv
x5
)
)
(
cop
(
cv
x6
)
(
cv
x8
)
)
ccgr
)
(
wbr
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cop
(
cv
x7
)
(
cv
x8
)
)
ccgr
)
)
)
(
λ x8 .
cfv
(
cv
x2
)
cee
)
)
(
λ x7 .
cfv
(
cv
x2
)
cee
)
)
(
λ x6 .
cfv
(
cv
x2
)
cee
)
)
(
λ x5 .
cfv
(
cv
x2
)
cee
)
)
(
λ x4 .
cfv
(
cv
x2
)
cee
)
)
(
λ x3 .
cfv
(
cv
x2
)
cee
)
)
(
λ x2 .
cn
)
)
)
(proof)
Theorem
df_fs
:
wceq
cfs
(
copab
(
λ x0 x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
w3a
(
wceq
(
cv
x0
)
(
cop
(
cop
(
cv
x3
)
(
cv
x4
)
)
(
cop
(
cv
x5
)
(
cv
x6
)
)
)
)
(
wceq
(
cv
x1
)
(
cop
(
cop
(
cv
x7
)
(
cv
x8
)
)
(
cop
(
cv
x9
)
(
cv
x10
)
)
)
)
(
w3a
(
wbr
(
cv
x3
)
(
cop
(
cv
x4
)
(
cv
x5
)
)
ccolin
)
(
wbr
(
cop
(
cv
x3
)
(
cop
(
cv
x4
)
(
cv
x5
)
)
)
(
cop
(
cv
x7
)
(
cop
(
cv
x8
)
(
cv
x9
)
)
)
ccgr3
)
(
wa
(
wbr
(
cop
(
cv
x3
)
(
cv
x6
)
)
(
cop
(
cv
x7
)
(
cv
x10
)
)
ccgr
)
(
wbr
(
cop
(
cv
x4
)
(
cv
x6
)
)
(
cop
(
cv
x8
)
(
cv
x10
)
)
ccgr
)
)
)
)
(
λ x10 .
cfv
(
cv
x2
)
cee
)
)
(
λ x9 .
cfv
(
cv
x2
)
cee
)
)
(
λ x8 .
cfv
(
cv
x2
)
cee
)
)
(
λ x7 .
cfv
(
cv
x2
)
cee
)
)
(
λ x6 .
cfv
(
cv
x2
)
cee
)
)
(
λ x5 .
cfv
(
cv
x2
)
cee
)
)
(
λ x4 .
cfv
(
cv
x2
)
cee
)
)
(
λ x3 .
cfv
(
cv
x2
)
cee
)
)
(
λ x2 .
cn
)
)
)
(proof)
Theorem
df_segle
:
wceq
csegle
(
copab
(
λ x0 x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
w3a
(
wceq
(
cv
x0
)
(
cop
(
cv
x3
)
(
cv
x4
)
)
)
(
wceq
(
cv
x1
)
(
cop
(
cv
x5
)
(
cv
x6
)
)
)
(
wrex
(
λ x7 .
wa
(
wbr
(
cv
x7
)
(
cop
(
cv
x5
)
(
cv
x6
)
)
cbtwn
)
(
wbr
(
cop
(
cv
x3
)
(
cv
x4
)
)
(
cop
(
cv
x5
)
(
cv
x7
)
)
ccgr
)
)
(
λ x7 .
cfv
(
cv
x2
)
cee
)
)
)
(
λ x6 .
cfv
(
cv
x2
)
cee
)
)
(
λ x5 .
cfv
(
cv
x2
)
cee
)
)
(
λ x4 .
cfv
(
cv
x2
)
cee
)
)
(
λ x3 .
cfv
(
cv
x2
)
cee
)
)
(
λ x2 .
cn
)
)
)
(proof)
Theorem
df_outsideof
:
wceq
coutsideof
(
cdif
ccolin
cbtwn
)
(proof)
Theorem
df_line2
:
wceq
cline2
(
coprab
(
λ x0 x1 x2 .
wrex
(
λ x3 .
wa
(
w3a
(
wcel
(
cv
x0
)
(
cfv
(
cv
x3
)
cee
)
)
(
wcel
(
cv
x1
)
(
cfv
(
cv
x3
)
cee
)
)
(
wne
(
cv
x0
)
(
cv
x1
)
)
)
(
wceq
(
cv
x2
)
(
cec
(
cop
(
cv
x0
)
(
cv
x1
)
)
(
ccnv
ccolin
)
)
)
)
(
λ x3 .
cn
)
)
)
(proof)
Theorem
df_ray
:
wceq
cray
(
coprab
(
λ x0 x1 x2 .
wrex
(
λ x3 .
wa
(
w3a
(
wcel
(
cv
x0
)
(
cfv
(
cv
x3
)
cee
)
)
(
wcel
(
cv
x1
)
(
cfv
(
cv
x3
)
cee
)
)
(
wne
(
cv
x0
)
(
cv
x1
)
)
)
(
wceq
(
cv
x2
)
(
crab
(
λ x4 .
wbr
(
cv
x0
)
(
cop
(
cv
x1
)
(
cv
x4
)
)
coutsideof
)
(
λ x4 .
cfv
(
cv
x3
)
cee
)
)
)
)
(
λ x3 .
cn
)
)
)
(proof)
Theorem
df_lines2
:
wceq
clines2
(
crn
cline2
)
(proof)
Theorem
df_fwddif
:
wceq
cfwddif
(
cmpt
(
λ x0 .
co
cc
cc
cpm
)
(
λ x0 .
cmpt
(
λ x1 .
crab
(
λ x2 .
wcel
(
co
(
cv
x2
)
c1
caddc
)
(
cdm
(
cv
x0
)
)
)
(
λ x2 .
cdm
(
cv
x0
)
)
)
(
λ x1 .
co
(
cfv
(
co
(
cv
x1
)
c1
caddc
)
(
cv
x0
)
)
(
cfv
(
cv
x1
)
(
cv
x0
)
)
cmin
)
)
)
(proof)
Theorem
df_fwddifn
:
wceq
cfwddifn
(
cmpt2
(
λ x0 x1 .
cn0
)
(
λ x0 x1 .
co
cc
cc
cpm
)
(
λ x0 x1 .
cmpt
(
λ x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wcel
(
co
(
cv
x3
)
(
cv
x4
)
caddc
)
(
cdm
(
cv
x1
)
)
)
(
λ x4 .
co
cc0
(
cv
x0
)
cfz
)
)
(
λ x3 .
cc
)
)
(
λ x2 .
csu
(
co
cc0
(
cv
x0
)
cfz
)
(
λ x3 .
co
(
co
(
cv
x0
)
(
cv
x3
)
cbc
)
(
co
(
co
(
cneg
c1
)
(
co
(
cv
x0
)
(
cv
x3
)
cmin
)
cexp
)
(
cfv
(
co
(
cv
x2
)
(
cv
x3
)
caddc
)
(
cv
x1
)
)
cmul
)
cmul
)
)
)
)
(proof)
Theorem
df_hf
:
wceq
chf
(
cuni
(
cima
cr1
com
)
)
(proof)
Theorem
df_fne
:
wceq
cfne
(
copab
(
λ x0 x1 .
wa
(
wceq
(
cuni
(
cv
x0
)
)
(
cuni
(
cv
x1
)
)
)
(
wral
(
λ x2 .
wss
(
cv
x2
)
(
cuni
(
cin
(
cv
x1
)
(
cpw
(
cv
x2
)
)
)
)
)
(
λ x2 .
cv
x0
)
)
)
)
(proof)
Theorem
df_3nand
:
∀ x0 x1 x2 : ο .
wb
(
w3nand
x0
x1
x2
)
(
x0
⟶
x1
⟶
wn
x2
)
(proof)
Theorem
df_gcdOLD
:
∀ x0 x1 :
ι → ο
.
wceq
(
cgcdOLD
x0
x1
)
(
csup
(
crab
(
λ x2 .
wa
(
wcel
(
co
x0
(
cv
x2
)
cdiv
)
cn
)
(
wcel
(
co
x1
(
cv
x2
)
cdiv
)
cn
)
)
(
λ x2 .
cn
)
)
cn
clt
)
(proof)
Theorem
ax_prv1
:
∀ x0 : ο .
x0
⟶
cprvb
x0
(proof)
Theorem
ax_prv2
:
∀ x0 x1 : ο .
cprvb
(
x0
⟶
x1
)
⟶
cprvb
x0
⟶
cprvb
x1
(proof)
Theorem
ax_prv3
:
∀ x0 : ο .
cprvb
x0
⟶
cprvb
(
cprvb
x0
)
(proof)
Theorem
df_ssb_b
:
∀ x0 :
ι → ο
.
∀ x1 .
wb
(
wssb
x0
x1
)
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x1
)
⟶
∀ x3 .
wceq
(
cv
x3
)
(
cv
x2
)
⟶
x0
x3
)
(proof)