Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr8PC../a03e1..
PUZ5n../d4572..
vout
Pr8PC../6fa6c.. 0.98 bars
TMGWT../b6c70.. ownership of 1687d.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMc4J../bb44e.. ownership of d826f.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMRnN../cea5d.. ownership of 6bcb5.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMNoS../b76dd.. ownership of a7df0.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMasL../91bbf.. ownership of c2d02.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJJh../64aff.. ownership of b7236.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
PUcd4../358b9.. doc published by PrCx1..
Param lam_idlam_id : ιι
Param apap : ιιι
Definition struct_idstruct_id := λ x0 . lam_id (ap x0 0)
Param lam_complam_comp : ιιιι
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param struct_ustruct_u : ιο
Param unpack_u_ounpack_u_o : ι(ι(ιι) → ο) → ο
Param injinj : ιι(ιι) → ο
Definition SelfInjectionstruct_u_inj := λ x0 . and (struct_u x0) (unpack_u_o x0 (λ x1 . inj x1 x1))
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Param UnaryFuncHomHom_struct_u : ιιιο
Known 7ce95..MetaCat_struct_u_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)MetaCat x0 UnaryFuncHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem 6bcb5..MetaCat_struct_u_inj : MetaCat SelfInjection UnaryFuncHom struct_id struct_comp
...

Param MetaFunctorMetaFunctor : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param TrueTrue : ο
Param HomSetSetHom : ιιιο
Known 6eadb..MetaCat_struct_u_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)MetaFunctor x0 UnaryFuncHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem 1687d..MetaCat_struct_u_inj_Forgetful : MetaFunctor SelfInjection UnaryFuncHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
...

Param MetaCat_initial_pinitial_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture bdf9a..MetaCat_struct_u_inj_initial : ∃ x0 . ∃ x2 : ι → ι . MetaCat_initial_p SelfInjection UnaryFuncHom struct_id struct_comp x0 x2
Param MetaCat_terminal_pterminal_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture 883bd..MetaCat_struct_u_inj_terminal : ∃ x0 . ∃ x2 : ι → ι . MetaCat_terminal_p SelfInjection UnaryFuncHom struct_id struct_comp x0 x2
Param MetaCat_coproduct_constr_pcoproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture d74c3..MetaCat_struct_u_inj_coproduct_constr : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p SelfInjection UnaryFuncHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_product_constr_pproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture 501bf..MetaCat_struct_u_inj_product_constr : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p SelfInjection UnaryFuncHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_coequalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture 74cc0.. : ∃ x0 x2 : ι → ι → ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p SelfInjection UnaryFuncHom struct_id struct_comp x0 x2 x4
Param MetaCat_equalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture 3bc25.. : ∃ x0 x2 : ι → ι → ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p SelfInjection UnaryFuncHom struct_id struct_comp x0 x2 x4
Param MetaCat_pushout_buggy_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture f0284.. : ∃ x0 x2 x4 : ι → ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p SelfInjection UnaryFuncHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_pullback_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture 2e0a7.. : ∃ x0 x2 x4 : ι → ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p SelfInjection UnaryFuncHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_exp_constr_pproduct_exponent_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιιιι) → ο
Conjecture 02f51..MetaCat_struct_u_inj_product_exponent : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . ∃ x8 x10 : ι → ι → ι . ∃ x12 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p SelfInjection UnaryFuncHom struct_id struct_comp x0 x2 x4 x6 x8 x10 x12
Param MetaCat_subobject_classifier_buggy_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιι(ιιιι) → (ιιιιιιι) → ο
Conjecture 01905.. : ∃ x0 . ∃ x2 : ι → ι . ∃ x4 x6 . ∃ x8 : ι → ι → ι → ι . ∃ x10 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_buggy_p SelfInjection UnaryFuncHom struct_id struct_comp x0 x2 x4 x6 x8 x10
Param MetaCat_nno_pnno_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιιι(ιιιι) → ο
Conjecture fc83d..MetaCat_struct_u_inj_nno : ∃ x0 . ∃ x2 : ι → ι . ∃ x4 x6 x8 . ∃ x10 : ι → ι → ι → ι . MetaCat_nno_p SelfInjection UnaryFuncHom struct_id struct_comp x0 x2 x4 x6 x8 x10
Param MetaAdjunction_strictMetaAdjunction_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Conjecture 8822b..MetaCat_struct_u_inj_left_adjoint_forgetful : ∃ x0 : ι → ι . ∃ x2 : ι → ι → ι → ι . ∃ x4 x6 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) SelfInjection UnaryFuncHom struct_id struct_comp x0 x2 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x4 x6