Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrK3Y..
/
e77c1..
PUefA..
/
c003f..
vout
PrK3Y..
/
5a4a4..
0.10 bars
TMcRy..
/
a6a3f..
ownership of
0128c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJZ5..
/
5099a..
ownership of
cdb4b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcb4..
/
fcc78..
ownership of
11e2b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLey..
/
90b27..
ownership of
e9782..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZzd..
/
09b89..
ownership of
50449..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMd5R..
/
5944b..
ownership of
2d801..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcBF..
/
ed69c..
ownership of
32b3d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUjA..
/
402ca..
ownership of
397df..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVuT..
/
03fc5..
ownership of
fd84f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMbW..
/
f7dbb..
ownership of
04138..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZkg..
/
c71fe..
ownership of
45219..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdvz..
/
5d539..
ownership of
85531..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaRY..
/
d187a..
ownership of
a5d40..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTEa..
/
e28e5..
ownership of
9de1d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYJk..
/
61054..
ownership of
ea7eb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPu3..
/
59300..
ownership of
d9ae8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbsi..
/
142d3..
ownership of
a9b93..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZFk..
/
76a00..
ownership of
2d712..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUKv..
/
62a0c..
ownership of
11004..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWgB..
/
c4f7c..
ownership of
f6403..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMS8L..
/
30167..
ownership of
d9421..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRd6..
/
cce72..
ownership of
44a06..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUbS..
/
d811e..
ownership of
3eac0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGsB..
/
015c8..
ownership of
4639c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQc6..
/
7bd48..
ownership of
7dedc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUJa..
/
d09b2..
ownership of
633b3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJ7P..
/
8277b..
ownership of
783bd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdzM..
/
2827c..
ownership of
2216f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcey..
/
b48a1..
ownership of
54d10..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPVb..
/
2efed..
ownership of
1cad2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGDR..
/
ab1f9..
ownership of
97bd5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUav..
/
e6c22..
ownership of
02b07..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ8f..
/
07c22..
ownership of
6b3c6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNri..
/
6d02a..
ownership of
768bf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTue..
/
5a0c2..
ownership of
8fb44..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMT7q..
/
9f024..
ownership of
bb854..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUbnn..
/
5e85a..
doc published by
PrCmT..
Known
df_ppi__df_mu__df_sgm__df_dchr__df_lgs__df_itv__df_lng__df_trkgc__df_trkgb__df_trkgcb__df_trkge__df_trkgld__df_trkg__df_cgrg__df_ismt__df_leg__df_hlg__df_mir
:
∀ x0 : ο .
(
wceq
cppi
(
cmpt
(
λ x1 .
cr
)
(
λ x1 .
cfv
(
cin
(
co
cc0
(
cv
x1
)
cicc
)
cprime
)
chash
)
)
⟶
wceq
cmu
(
cmpt
(
λ x1 .
cn
)
(
λ x1 .
cif
(
wrex
(
λ x2 .
wbr
(
co
(
cv
x2
)
c2
cexp
)
(
cv
x1
)
cdvds
)
(
λ x2 .
cprime
)
)
cc0
(
co
(
cneg
c1
)
(
cfv
(
crab
(
λ x2 .
wbr
(
cv
x2
)
(
cv
x1
)
cdvds
)
(
λ x2 .
cprime
)
)
chash
)
cexp
)
)
)
⟶
wceq
csgm
(
cmpt2
(
λ x1 x2 .
cc
)
(
λ x1 x2 .
cn
)
(
λ x1 x2 .
csu
(
crab
(
λ x3 .
wbr
(
cv
x3
)
(
cv
x2
)
cdvds
)
(
λ x3 .
cn
)
)
(
λ x3 .
co
(
cv
x3
)
(
cv
x1
)
ccxp
)
)
)
⟶
wceq
cdchr
(
cmpt
(
λ x1 .
cn
)
(
λ x1 .
csb
(
cfv
(
cv
x1
)
czn
)
(
λ x2 .
csb
(
crab
(
λ x3 .
wss
(
cxp
(
cdif
(
cfv
(
cv
x2
)
cbs
)
(
cfv
(
cv
x2
)
cui
)
)
(
csn
cc0
)
)
(
cv
x3
)
)
(
λ x3 .
co
(
cfv
(
cv
x2
)
cmgp
)
(
cfv
ccnfld
cmgp
)
cmhm
)
)
(
λ x3 .
cpr
(
cop
(
cfv
cnx
cbs
)
(
cv
x3
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cres
(
cof
cmul
)
(
cxp
(
cv
x3
)
(
cv
x3
)
)
)
)
)
)
)
)
⟶
wceq
clgs
(
cmpt2
(
λ x1 x2 .
cz
)
(
λ x1 x2 .
cz
)
(
λ x1 x2 .
cif
(
wceq
(
cv
x2
)
cc0
)
(
cif
(
wceq
(
co
(
cv
x1
)
c2
cexp
)
c1
)
c1
cc0
)
(
co
(
cif
(
wa
(
wbr
(
cv
x2
)
cc0
clt
)
(
wbr
(
cv
x1
)
cc0
clt
)
)
(
cneg
c1
)
c1
)
(
cfv
(
cfv
(
cv
x2
)
cabs
)
(
cseq
cmul
(
cmpt
(
λ x3 .
cn
)
(
λ x3 .
cif
(
wcel
(
cv
x3
)
cprime
)
(
co
(
cif
(
wceq
(
cv
x3
)
c2
)
(
cif
(
wbr
c2
(
cv
x1
)
cdvds
)
cc0
(
cif
(
wcel
(
co
(
cv
x1
)
c8
cmo
)
(
cpr
c1
c7
)
)
c1
(
cneg
c1
)
)
)
(
co
(
co
(
co
(
co
(
cv
x1
)
(
co
(
co
(
cv
x3
)
c1
cmin
)
c2
cdiv
)
cexp
)
c1
caddc
)
(
cv
x3
)
cmo
)
c1
cmin
)
)
(
co
(
cv
x3
)
(
cv
x2
)
cpc
)
cexp
)
c1
)
)
c1
)
)
cmul
)
)
)
⟶
wceq
citv
(
cslot
(
cdc
c1
c6
)
)
⟶
wceq
clng
(
cslot
(
cdc
c1
c7
)
)
⟶
wceq
cstrkgc
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wa
(
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
co
(
cv
x5
)
(
cv
x4
)
(
cv
x3
)
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wceq
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
co
(
cv
x6
)
(
cv
x6
)
(
cv
x3
)
)
⟶
wceq
(
cv
x4
)
(
cv
x5
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
)
(
cfv
(
cv
x1
)
cds
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
cstrkgb
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
w3a
(
wral
(
λ x4 .
wral
(
λ x5 .
wcel
(
cv
x5
)
(
co
(
cv
x4
)
(
cv
x4
)
(
cv
x3
)
)
⟶
wceq
(
cv
x4
)
(
cv
x5
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wa
(
wcel
(
cv
x7
)
(
co
(
cv
x4
)
(
cv
x6
)
(
cv
x3
)
)
)
(
wcel
(
cv
x8
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
)
⟶
wrex
(
λ x9 .
wa
(
wcel
(
cv
x9
)
(
co
(
cv
x7
)
(
cv
x5
)
(
cv
x3
)
)
)
(
wcel
(
cv
x9
)
(
co
(
cv
x8
)
(
cv
x4
)
(
cv
x3
)
)
)
)
(
λ x9 .
cv
x2
)
)
(
λ x8 .
cv
x2
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wrex
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wcel
(
cv
x7
)
(
co
(
cv
x6
)
(
cv
x8
)
(
cv
x3
)
)
)
(
λ x8 .
cv
x5
)
)
(
λ x7 .
cv
x4
)
)
(
λ x6 .
cv
x2
)
⟶
wrex
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wcel
(
cv
x6
)
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x3
)
)
)
(
λ x8 .
cv
x5
)
)
(
λ x7 .
cv
x4
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cpw
(
cv
x2
)
)
)
(
λ x4 .
cpw
(
cv
x2
)
)
)
)
(
cfv
(
cv
x1
)
citv
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
cstrkgcb
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wa
(
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wral
(
λ x9 .
wral
(
λ x10 .
wral
(
λ x11 .
wral
(
λ x12 .
wa
(
w3a
(
wne
(
cv
x5
)
(
cv
x6
)
)
(
wcel
(
cv
x6
)
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x4
)
)
)
(
wcel
(
cv
x10
)
(
co
(
cv
x9
)
(
cv
x11
)
(
cv
x4
)
)
)
)
(
wa
(
wa
(
wceq
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
(
co
(
cv
x9
)
(
cv
x10
)
(
cv
x3
)
)
)
(
wceq
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x3
)
)
(
co
(
cv
x10
)
(
cv
x11
)
(
cv
x3
)
)
)
)
(
wa
(
wceq
(
co
(
cv
x5
)
(
cv
x8
)
(
cv
x3
)
)
(
co
(
cv
x9
)
(
cv
x12
)
(
cv
x3
)
)
)
(
wceq
(
co
(
cv
x6
)
(
cv
x8
)
(
cv
x3
)
)
(
co
(
cv
x10
)
(
cv
x12
)
(
cv
x3
)
)
)
)
)
⟶
wceq
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x3
)
)
(
co
(
cv
x11
)
(
cv
x12
)
(
cv
x3
)
)
)
(
λ x12 .
cv
x2
)
)
(
λ x11 .
cv
x2
)
)
(
λ x10 .
cv
x2
)
)
(
λ x9 .
cv
x2
)
)
(
λ x8 .
cv
x2
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wrex
(
λ x9 .
wa
(
wcel
(
cv
x6
)
(
co
(
cv
x5
)
(
cv
x9
)
(
cv
x4
)
)
)
(
wceq
(
co
(
cv
x6
)
(
cv
x9
)
(
cv
x3
)
)
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x3
)
)
)
)
(
λ x9 .
cv
x2
)
)
(
λ x8 .
cv
x2
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
)
(
cfv
(
cv
x1
)
citv
)
)
(
cfv
(
cv
x1
)
cds
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
cstrkge
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
w3a
(
wcel
(
cv
x7
)
(
co
(
cv
x4
)
(
cv
x8
)
(
cv
x3
)
)
)
(
wcel
(
cv
x7
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
)
(
wne
(
cv
x4
)
(
cv
x7
)
)
⟶
wrex
(
λ x9 .
wrex
(
λ x10 .
w3a
(
wcel
(
cv
x5
)
(
co
(
cv
x4
)
(
cv
x9
)
(
cv
x3
)
)
)
(
wcel
(
cv
x6
)
(
co
(
cv
x4
)
(
cv
x10
)
(
cv
x3
)
)
)
(
wcel
(
cv
x8
)
(
co
(
cv
x9
)
(
cv
x10
)
(
cv
x3
)
)
)
)
(
λ x10 .
cv
x2
)
)
(
λ x9 .
cv
x2
)
)
(
λ x8 .
cv
x2
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
cfv
(
cv
x1
)
citv
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
cstrkgld
(
copab
(
λ x1 x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wex
(
λ x6 .
wa
(
wf1
(
co
c1
(
cv
x2
)
cfzo
)
(
cv
x3
)
(
cv
x6
)
)
(
wrex
(
λ x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wa
(
wral
(
λ x10 .
w3a
(
wceq
(
co
(
cfv
c1
(
cv
x6
)
)
(
cv
x7
)
(
cv
x4
)
)
(
co
(
cfv
(
cv
x10
)
(
cv
x6
)
)
(
cv
x7
)
(
cv
x4
)
)
)
(
wceq
(
co
(
cfv
c1
(
cv
x6
)
)
(
cv
x8
)
(
cv
x4
)
)
(
co
(
cfv
(
cv
x10
)
(
cv
x6
)
)
(
cv
x8
)
(
cv
x4
)
)
)
(
wceq
(
co
(
cfv
c1
(
cv
x6
)
)
(
cv
x9
)
(
cv
x4
)
)
(
co
(
cfv
(
cv
x10
)
(
cv
x6
)
)
(
cv
x9
)
(
cv
x4
)
)
)
)
(
λ x10 .
co
c2
(
cv
x2
)
cfzo
)
)
(
wn
(
w3o
(
wcel
(
cv
x9
)
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x5
)
)
)
(
wcel
(
cv
x7
)
(
co
(
cv
x9
)
(
cv
x8
)
(
cv
x5
)
)
)
(
wcel
(
cv
x8
)
(
co
(
cv
x7
)
(
cv
x9
)
(
cv
x5
)
)
)
)
)
)
(
λ x9 .
cv
x3
)
)
(
λ x8 .
cv
x3
)
)
(
λ x7 .
cv
x3
)
)
)
)
(
cfv
(
cv
x1
)
citv
)
)
(
cfv
(
cv
x1
)
cds
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
cstrkg
(
cin
(
cin
cstrkgc
cstrkgb
)
(
cin
cstrkgcb
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wceq
(
cfv
(
cv
x1
)
clng
)
(
cmpt2
(
λ x4 x5 .
cv
x2
)
(
λ x4 x5 .
cdif
(
cv
x2
)
(
csn
(
cv
x4
)
)
)
(
λ x4 x5 .
crab
(
λ x6 .
w3o
(
wcel
(
cv
x6
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
)
(
wcel
(
cv
x4
)
(
co
(
cv
x6
)
(
cv
x5
)
(
cv
x3
)
)
)
(
wcel
(
cv
x5
)
(
co
(
cv
x4
)
(
cv
x6
)
(
cv
x3
)
)
)
)
(
λ x6 .
cv
x2
)
)
)
)
(
cfv
(
cv
x1
)
citv
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
)
)
⟶
wceq
ccgrg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wa
(
wcel
(
cv
x2
)
(
co
(
cfv
(
cv
x1
)
cbs
)
cr
cpm
)
)
(
wcel
(
cv
x3
)
(
co
(
cfv
(
cv
x1
)
cbs
)
cr
cpm
)
)
)
(
wa
(
wceq
(
cdm
(
cv
x2
)
)
(
cdm
(
cv
x3
)
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
co
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cds
)
)
(
co
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
cds
)
)
)
(
λ x5 .
cdm
(
cv
x2
)
)
)
(
λ x4 .
cdm
(
cv
x2
)
)
)
)
)
)
)
⟶
wceq
cismt
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cab
(
λ x3 .
wa
(
wf1o
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x2
)
cbs
)
(
cv
x3
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
co
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
cds
)
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cds
)
)
)
(
λ x5 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
)
)
)
⟶
wceq
cleg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wsbc
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wa
(
wceq
(
cv
x3
)
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x5
)
)
)
(
wrex
(
λ x9 .
wa
(
wcel
(
cv
x9
)
(
co
(
cv
x7
)
(
cv
x8
)
(
cv
x6
)
)
)
(
wceq
(
cv
x2
)
(
co
(
cv
x7
)
(
cv
x9
)
(
cv
x5
)
)
)
)
(
λ x9 .
cv
x4
)
)
)
(
λ x8 .
cv
x4
)
)
(
λ x7 .
cv
x4
)
)
(
cfv
(
cv
x1
)
citv
)
)
(
cfv
(
cv
x1
)
cds
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
wceq
chlg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
copab
(
λ x3 x4 .
wa
(
wa
(
wcel
(
cv
x3
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wcel
(
cv
x4
)
(
cfv
(
cv
x1
)
cbs
)
)
)
(
w3a
(
wne
(
cv
x3
)
(
cv
x2
)
)
(
wne
(
cv
x4
)
(
cv
x2
)
)
(
wo
(
wcel
(
cv
x3
)
(
co
(
cv
x2
)
(
cv
x4
)
(
cfv
(
cv
x1
)
citv
)
)
)
(
wcel
(
cv
x4
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
citv
)
)
)
)
)
)
)
)
)
⟶
wceq
cmir
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
cmpt
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x3 .
crio
(
λ x4 .
wa
(
wceq
(
co
(
cv
x2
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cds
)
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cds
)
)
)
(
wcel
(
cv
x2
)
(
co
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x1
)
citv
)
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_ppi
:
wceq
cppi
(
cmpt
(
λ x0 .
cr
)
(
λ x0 .
cfv
(
cin
(
co
cc0
(
cv
x0
)
cicc
)
cprime
)
chash
)
)
(proof)
Theorem
df_mu
:
wceq
cmu
(
cmpt
(
λ x0 .
cn
)
(
λ x0 .
cif
(
wrex
(
λ x1 .
wbr
(
co
(
cv
x1
)
c2
cexp
)
(
cv
x0
)
cdvds
)
(
λ x1 .
cprime
)
)
cc0
(
co
(
cneg
c1
)
(
cfv
(
crab
(
λ x1 .
wbr
(
cv
x1
)
(
cv
x0
)
cdvds
)
(
λ x1 .
cprime
)
)
chash
)
cexp
)
)
)
(proof)
Theorem
df_sgm
:
wceq
csgm
(
cmpt2
(
λ x0 x1 .
cc
)
(
λ x0 x1 .
cn
)
(
λ x0 x1 .
csu
(
crab
(
λ x2 .
wbr
(
cv
x2
)
(
cv
x1
)
cdvds
)
(
λ x2 .
cn
)
)
(
λ x2 .
co
(
cv
x2
)
(
cv
x0
)
ccxp
)
)
)
(proof)
Theorem
df_dchr
:
wceq
cdchr
(
cmpt
(
λ x0 .
cn
)
(
λ x0 .
csb
(
cfv
(
cv
x0
)
czn
)
(
λ x1 .
csb
(
crab
(
λ x2 .
wss
(
cxp
(
cdif
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cui
)
)
(
csn
cc0
)
)
(
cv
x2
)
)
(
λ x2 .
co
(
cfv
(
cv
x1
)
cmgp
)
(
cfv
ccnfld
cmgp
)
cmhm
)
)
(
λ x2 .
cpr
(
cop
(
cfv
cnx
cbs
)
(
cv
x2
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cres
(
cof
cmul
)
(
cxp
(
cv
x2
)
(
cv
x2
)
)
)
)
)
)
)
)
(proof)
Theorem
df_lgs
:
wceq
clgs
(
cmpt2
(
λ x0 x1 .
cz
)
(
λ x0 x1 .
cz
)
(
λ x0 x1 .
cif
(
wceq
(
cv
x1
)
cc0
)
(
cif
(
wceq
(
co
(
cv
x0
)
c2
cexp
)
c1
)
c1
cc0
)
(
co
(
cif
(
wa
(
wbr
(
cv
x1
)
cc0
clt
)
(
wbr
(
cv
x0
)
cc0
clt
)
)
(
cneg
c1
)
c1
)
(
cfv
(
cfv
(
cv
x1
)
cabs
)
(
cseq
cmul
(
cmpt
(
λ x2 .
cn
)
(
λ x2 .
cif
(
wcel
(
cv
x2
)
cprime
)
(
co
(
cif
(
wceq
(
cv
x2
)
c2
)
(
cif
(
wbr
c2
(
cv
x0
)
cdvds
)
cc0
(
cif
(
wcel
(
co
(
cv
x0
)
c8
cmo
)
(
cpr
c1
c7
)
)
c1
(
cneg
c1
)
)
)
(
co
(
co
(
co
(
co
(
cv
x0
)
(
co
(
co
(
cv
x2
)
c1
cmin
)
c2
cdiv
)
cexp
)
c1
caddc
)
(
cv
x2
)
cmo
)
c1
cmin
)
)
(
co
(
cv
x2
)
(
cv
x1
)
cpc
)
cexp
)
c1
)
)
c1
)
)
cmul
)
)
)
(proof)
Theorem
df_itv
:
wceq
citv
(
cslot
(
cdc
c1
c6
)
)
(proof)
Theorem
df_lng
:
wceq
clng
(
cslot
(
cdc
c1
c7
)
)
(proof)
Theorem
df_trkgc
:
wceq
cstrkgc
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wa
(
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
co
(
cv
x4
)
(
cv
x3
)
(
cv
x2
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
co
(
cv
x5
)
(
cv
x5
)
(
cv
x2
)
)
⟶
wceq
(
cv
x3
)
(
cv
x4
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
)
(
cfv
(
cv
x0
)
cds
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_trkgb
:
wceq
cstrkgb
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
w3a
(
wral
(
λ x3 .
wral
(
λ x4 .
wcel
(
cv
x4
)
(
co
(
cv
x3
)
(
cv
x3
)
(
cv
x2
)
)
⟶
wceq
(
cv
x3
)
(
cv
x4
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wa
(
wcel
(
cv
x6
)
(
co
(
cv
x3
)
(
cv
x5
)
(
cv
x2
)
)
)
(
wcel
(
cv
x7
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
)
⟶
wrex
(
λ x8 .
wa
(
wcel
(
cv
x8
)
(
co
(
cv
x6
)
(
cv
x4
)
(
cv
x2
)
)
)
(
wcel
(
cv
x8
)
(
co
(
cv
x7
)
(
cv
x3
)
(
cv
x2
)
)
)
)
(
λ x8 .
cv
x1
)
)
(
λ x7 .
cv
x1
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wrex
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wcel
(
cv
x6
)
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x2
)
)
)
(
λ x7 .
cv
x4
)
)
(
λ x6 .
cv
x3
)
)
(
λ x5 .
cv
x1
)
⟶
wrex
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wcel
(
cv
x5
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x2
)
)
)
(
λ x7 .
cv
x4
)
)
(
λ x6 .
cv
x3
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cpw
(
cv
x1
)
)
)
(
λ x3 .
cpw
(
cv
x1
)
)
)
)
(
cfv
(
cv
x0
)
citv
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_trkgcb
:
wceq
cstrkgcb
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wa
(
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wral
(
λ x9 .
wral
(
λ x10 .
wral
(
λ x11 .
wa
(
w3a
(
wne
(
cv
x4
)
(
cv
x5
)
)
(
wcel
(
cv
x5
)
(
co
(
cv
x4
)
(
cv
x6
)
(
cv
x3
)
)
)
(
wcel
(
cv
x9
)
(
co
(
cv
x8
)
(
cv
x10
)
(
cv
x3
)
)
)
)
(
wa
(
wa
(
wceq
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
(
co
(
cv
x8
)
(
cv
x9
)
(
cv
x2
)
)
)
(
wceq
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x2
)
)
(
co
(
cv
x9
)
(
cv
x10
)
(
cv
x2
)
)
)
)
(
wa
(
wceq
(
co
(
cv
x4
)
(
cv
x7
)
(
cv
x2
)
)
(
co
(
cv
x8
)
(
cv
x11
)
(
cv
x2
)
)
)
(
wceq
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x2
)
)
(
co
(
cv
x9
)
(
cv
x11
)
(
cv
x2
)
)
)
)
)
⟶
wceq
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x2
)
)
(
co
(
cv
x10
)
(
cv
x11
)
(
cv
x2
)
)
)
(
λ x11 .
cv
x1
)
)
(
λ x10 .
cv
x1
)
)
(
λ x9 .
cv
x1
)
)
(
λ x8 .
cv
x1
)
)
(
λ x7 .
cv
x1
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wrex
(
λ x8 .
wa
(
wcel
(
cv
x5
)
(
co
(
cv
x4
)
(
cv
x8
)
(
cv
x3
)
)
)
(
wceq
(
co
(
cv
x5
)
(
cv
x8
)
(
cv
x2
)
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x2
)
)
)
)
(
λ x8 .
cv
x1
)
)
(
λ x7 .
cv
x1
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
)
(
cfv
(
cv
x0
)
citv
)
)
(
cfv
(
cv
x0
)
cds
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_trkge
:
wceq
cstrkge
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
w3a
(
wcel
(
cv
x6
)
(
co
(
cv
x3
)
(
cv
x7
)
(
cv
x2
)
)
)
(
wcel
(
cv
x6
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
)
(
wne
(
cv
x3
)
(
cv
x6
)
)
⟶
wrex
(
λ x8 .
wrex
(
λ x9 .
w3a
(
wcel
(
cv
x4
)
(
co
(
cv
x3
)
(
cv
x8
)
(
cv
x2
)
)
)
(
wcel
(
cv
x5
)
(
co
(
cv
x3
)
(
cv
x9
)
(
cv
x2
)
)
)
(
wcel
(
cv
x7
)
(
co
(
cv
x8
)
(
cv
x9
)
(
cv
x2
)
)
)
)
(
λ x9 .
cv
x1
)
)
(
λ x8 .
cv
x1
)
)
(
λ x7 .
cv
x1
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
cfv
(
cv
x0
)
citv
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_trkgld
:
wceq
cstrkgld
(
copab
(
λ x0 x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wex
(
λ x5 .
wa
(
wf1
(
co
c1
(
cv
x1
)
cfzo
)
(
cv
x2
)
(
cv
x5
)
)
(
wrex
(
λ x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wa
(
wral
(
λ x9 .
w3a
(
wceq
(
co
(
cfv
c1
(
cv
x5
)
)
(
cv
x6
)
(
cv
x3
)
)
(
co
(
cfv
(
cv
x9
)
(
cv
x5
)
)
(
cv
x6
)
(
cv
x3
)
)
)
(
wceq
(
co
(
cfv
c1
(
cv
x5
)
)
(
cv
x7
)
(
cv
x3
)
)
(
co
(
cfv
(
cv
x9
)
(
cv
x5
)
)
(
cv
x7
)
(
cv
x3
)
)
)
(
wceq
(
co
(
cfv
c1
(
cv
x5
)
)
(
cv
x8
)
(
cv
x3
)
)
(
co
(
cfv
(
cv
x9
)
(
cv
x5
)
)
(
cv
x8
)
(
cv
x3
)
)
)
)
(
λ x9 .
co
c2
(
cv
x1
)
cfzo
)
)
(
wn
(
w3o
(
wcel
(
cv
x8
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x4
)
)
)
(
wcel
(
cv
x6
)
(
co
(
cv
x8
)
(
cv
x7
)
(
cv
x4
)
)
)
(
wcel
(
cv
x7
)
(
co
(
cv
x6
)
(
cv
x8
)
(
cv
x4
)
)
)
)
)
)
(
λ x8 .
cv
x2
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
cv
x2
)
)
)
)
(
cfv
(
cv
x0
)
citv
)
)
(
cfv
(
cv
x0
)
cds
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_trkg
:
wceq
cstrkg
(
cin
(
cin
cstrkgc
cstrkgb
)
(
cin
cstrkgcb
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wceq
(
cfv
(
cv
x0
)
clng
)
(
cmpt2
(
λ x3 x4 .
cv
x1
)
(
λ x3 x4 .
cdif
(
cv
x1
)
(
csn
(
cv
x3
)
)
)
(
λ x3 x4 .
crab
(
λ x5 .
w3o
(
wcel
(
cv
x5
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
)
(
wcel
(
cv
x3
)
(
co
(
cv
x5
)
(
cv
x4
)
(
cv
x2
)
)
)
(
wcel
(
cv
x4
)
(
co
(
cv
x3
)
(
cv
x5
)
(
cv
x2
)
)
)
)
(
λ x5 .
cv
x1
)
)
)
)
(
cfv
(
cv
x0
)
citv
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
)
)
(proof)
Theorem
df_cgrg
:
wceq
ccgrg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wa
(
wcel
(
cv
x1
)
(
co
(
cfv
(
cv
x0
)
cbs
)
cr
cpm
)
)
(
wcel
(
cv
x2
)
(
co
(
cfv
(
cv
x0
)
cbs
)
cr
cpm
)
)
)
(
wa
(
wceq
(
cdm
(
cv
x1
)
)
(
cdm
(
cv
x2
)
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x4
)
(
cv
x1
)
)
(
cfv
(
cv
x0
)
cds
)
)
(
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
cds
)
)
)
(
λ x4 .
cdm
(
cv
x1
)
)
)
(
λ x3 .
cdm
(
cv
x1
)
)
)
)
)
)
)
(proof)
Theorem
df_ismt
:
wceq
cismt
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cab
(
λ x2 .
wa
(
wf1o
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cds
)
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cds
)
)
)
(
λ x4 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
)
)
)
(proof)
Theorem
df_leg
:
wceq
cleg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wrex
(
λ x6 .
wrex
(
λ x7 .
wa
(
wceq
(
cv
x2
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x4
)
)
)
(
wrex
(
λ x8 .
wa
(
wcel
(
cv
x8
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x5
)
)
)
(
wceq
(
cv
x1
)
(
co
(
cv
x6
)
(
cv
x8
)
(
cv
x4
)
)
)
)
(
λ x8 .
cv
x3
)
)
)
(
λ x7 .
cv
x3
)
)
(
λ x6 .
cv
x3
)
)
(
cfv
(
cv
x0
)
citv
)
)
(
cfv
(
cv
x0
)
cds
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)
Theorem
df_hlg
:
wceq
chlg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wa
(
wcel
(
cv
x2
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wcel
(
cv
x3
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(
w3a
(
wne
(
cv
x2
)
(
cv
x1
)
)
(
wne
(
cv
x3
)
(
cv
x1
)
)
(
wo
(
wcel
(
cv
x2
)
(
co
(
cv
x1
)
(
cv
x3
)
(
cfv
(
cv
x0
)
citv
)
)
)
(
wcel
(
cv
x3
)
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
citv
)
)
)
)
)
)
)
)
)
(proof)
Theorem
df_mir
:
wceq
cmir
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x2 .
crio
(
λ x3 .
wa
(
wceq
(
co
(
cv
x1
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cds
)
)
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cds
)
)
)
(
wcel
(
cv
x1
)
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x0
)
citv
)
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
)
)
)
(proof)