Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrB43..
/
0e873..
PUUtp..
/
00ea3..
vout
PrB43..
/
a1b0a..
0.10 bars
TMK8B..
/
b73fc..
ownership of
275bc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMErK..
/
63ba9..
ownership of
587d0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPPU..
/
cb4dc..
ownership of
d3006..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUo6..
/
b3162..
ownership of
f4993..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbLV..
/
43014..
ownership of
fb167..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQfd..
/
04a0c..
ownership of
36f21..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdgE..
/
0bd58..
ownership of
159eb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcGb..
/
3240b..
ownership of
a75d7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMS2D..
/
594b7..
ownership of
6c4a3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa3C..
/
499c4..
ownership of
88a38..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdfE..
/
76ea3..
ownership of
99785..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJVR..
/
2080e..
ownership of
4c6bd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb8S..
/
34672..
ownership of
8bcd7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTZm..
/
a2057..
ownership of
d3aa6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMpY..
/
9ade3..
ownership of
ca576..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWbv..
/
35da1..
ownership of
11639..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMhx..
/
779e8..
ownership of
ec678..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWXs..
/
8bbe8..
ownership of
2c297..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSCS..
/
5f40f..
ownership of
79481..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMd8p..
/
6774e..
ownership of
f4835..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPaE..
/
c266b..
ownership of
4c5ac..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZMw..
/
2ce4b..
ownership of
db083..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGo9..
/
0a687..
ownership of
1193f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TML8m..
/
edfcb..
ownership of
8b54c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSrE..
/
5aceb..
ownership of
f2b4f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb9K..
/
0b5f0..
ownership of
c3c42..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTHy..
/
27731..
ownership of
0aae8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMnD..
/
9ce24..
ownership of
cf91e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHcp..
/
7e973..
ownership of
7f771..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ3D..
/
7b860..
ownership of
1482e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQaE..
/
e00c3..
ownership of
be078..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcfU..
/
ed6c6..
ownership of
89026..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYUa..
/
4eca9..
ownership of
8bc62..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSxM..
/
de913..
ownership of
be06b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRXS..
/
d4fd7..
ownership of
f6b8a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJ5a..
/
84481..
ownership of
ca8f2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUfj2..
/
361c3..
doc published by
PrCmT..
Known
df_retr__df_pconn__df_sconn__df_cvm__df_goel__df_gona__df_goal__df_sat__df_sate__df_fmla__df_gonot__df_goan__df_goim__df_goor__df_gobi__df_goeq__df_goex__df_prv
:
∀ x0 : ο .
(
wceq
cretr
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
crab
(
λ x3 .
wrex
(
λ x4 .
wne
(
co
(
ccom
(
cv
x3
)
(
cv
x4
)
)
(
cres
cid
(
cuni
(
cv
x1
)
)
)
(
co
(
cv
x1
)
(
cv
x1
)
chtpy
)
)
c0
)
(
λ x4 .
co
(
cv
x2
)
(
cv
x1
)
ccn
)
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
ccn
)
)
)
⟶
wceq
cpconn
(
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wa
(
wceq
(
cfv
cc0
(
cv
x4
)
)
(
cv
x2
)
)
(
wceq
(
cfv
c1
(
cv
x4
)
)
(
cv
x3
)
)
)
(
λ x4 .
co
cii
(
cv
x1
)
ccn
)
)
(
λ x3 .
cuni
(
cv
x1
)
)
)
(
λ x2 .
cuni
(
cv
x1
)
)
)
(
λ x1 .
ctop
)
)
⟶
wceq
csconn
(
crab
(
λ x1 .
wral
(
λ x2 .
wceq
(
cfv
cc0
(
cv
x2
)
)
(
cfv
c1
(
cv
x2
)
)
⟶
wbr
(
cv
x2
)
(
cxp
(
co
cc0
c1
cicc
)
(
csn
(
cfv
cc0
(
cv
x2
)
)
)
)
(
cfv
(
cv
x1
)
cphtpc
)
)
(
λ x2 .
co
cii
(
cv
x1
)
ccn
)
)
(
λ x1 .
cpconn
)
)
⟶
wceq
ccvm
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wrex
(
λ x5 .
wa
(
wcel
(
cv
x4
)
(
cv
x5
)
)
(
wrex
(
λ x6 .
wa
(
wceq
(
cuni
(
cv
x6
)
)
(
cima
(
ccnv
(
cv
x3
)
)
(
cv
x5
)
)
)
(
wral
(
λ x7 .
wa
(
wral
(
λ x8 .
wceq
(
cin
(
cv
x7
)
(
cv
x8
)
)
c0
)
(
λ x8 .
cdif
(
cv
x6
)
(
csn
(
cv
x7
)
)
)
)
(
wcel
(
cres
(
cv
x3
)
(
cv
x7
)
)
(
co
(
co
(
cv
x1
)
(
cv
x7
)
crest
)
(
co
(
cv
x2
)
(
cv
x5
)
crest
)
chmeo
)
)
)
(
λ x7 .
cv
x6
)
)
)
(
λ x6 .
cdif
(
cpw
(
cv
x1
)
)
(
csn
c0
)
)
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cuni
(
cv
x2
)
)
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
ccn
)
)
)
⟶
wceq
cgoe
(
cmpt
(
λ x1 .
cxp
com
com
)
(
λ x1 .
cop
c0
(
cv
x1
)
)
)
⟶
wceq
cgna
(
cmpt
(
λ x1 .
cxp
cvv
cvv
)
(
λ x1 .
cop
c1o
(
cv
x1
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cgol
x1
x2
)
(
cop
c2o
(
cop
x2
x1
)
)
)
⟶
wceq
csat
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cres
(
crdg
(
cmpt
(
λ x3 .
cvv
)
(
λ x3 .
cun
(
cv
x3
)
(
copab
(
λ x4 x5 .
wrex
(
λ x6 .
wo
(
wrex
(
λ x7 .
wa
(
wceq
(
cv
x4
)
(
co
(
cfv
(
cv
x6
)
c1st
)
(
cfv
(
cv
x7
)
c1st
)
cgna
)
)
(
wceq
(
cv
x5
)
(
cdif
(
co
(
cv
x1
)
com
cmap
)
(
cin
(
cfv
(
cv
x6
)
c2nd
)
(
cfv
(
cv
x7
)
c2nd
)
)
)
)
)
(
λ x7 .
cv
x3
)
)
(
wrex
(
λ x7 .
wa
(
wceq
(
cv
x4
)
(
cgol
(
cfv
(
cv
x6
)
c1st
)
(
cv
x7
)
)
)
(
wceq
(
cv
x5
)
(
crab
(
λ x8 .
wral
(
λ x9 .
wcel
(
cun
(
csn
(
cop
(
cv
x7
)
(
cv
x9
)
)
)
(
cres
(
cv
x8
)
(
cdif
com
(
csn
(
cv
x7
)
)
)
)
)
(
cfv
(
cv
x6
)
c2nd
)
)
(
λ x9 .
cv
x1
)
)
(
λ x8 .
co
(
cv
x1
)
com
cmap
)
)
)
)
(
λ x7 .
com
)
)
)
(
λ x6 .
cv
x3
)
)
)
)
)
(
copab
(
λ x3 x4 .
wrex
(
λ x5 .
wrex
(
λ x6 .
wa
(
wceq
(
cv
x3
)
(
co
(
cv
x5
)
(
cv
x6
)
cgoe
)
)
(
wceq
(
cv
x4
)
(
crab
(
λ x7 .
wbr
(
cfv
(
cv
x5
)
(
cv
x7
)
)
(
cfv
(
cv
x6
)
(
cv
x7
)
)
(
cv
x2
)
)
(
λ x7 .
co
(
cv
x1
)
com
cmap
)
)
)
)
(
λ x6 .
com
)
)
(
λ x5 .
com
)
)
)
)
(
csuc
com
)
)
)
⟶
wceq
csate
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cfv
(
cv
x2
)
(
cfv
com
(
co
(
cv
x1
)
(
cin
cep
(
cxp
(
cv
x1
)
(
cv
x1
)
)
)
csat
)
)
)
)
⟶
wceq
cfmla
(
cmpt
(
λ x1 .
csuc
com
)
(
λ x1 .
cdm
(
cfv
(
cv
x1
)
(
co
c0
c0
csat
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cgon
x1
)
(
co
x1
x1
cgna
)
)
⟶
wceq
cgoa
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cgon
(
co
(
cv
x1
)
(
cv
x2
)
cgna
)
)
)
⟶
wceq
cgoi
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
cv
x1
)
(
cgon
(
cv
x2
)
)
cgna
)
)
⟶
wceq
cgoo
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
cgon
(
cv
x1
)
)
(
cv
x2
)
cgoi
)
)
⟶
wceq
cgob
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
co
(
cv
x1
)
(
cv
x2
)
cgoi
)
(
co
(
cv
x2
)
(
cv
x1
)
cgoi
)
cgoa
)
)
⟶
wceq
cgoq
(
cmpt2
(
λ x1 x2 .
com
)
(
λ x1 x2 .
com
)
(
λ x1 x2 .
csb
(
csuc
(
cun
(
cv
x1
)
(
cv
x2
)
)
)
(
λ x3 .
cgol
(
co
(
co
(
cv
x3
)
(
cv
x1
)
cgoe
)
(
co
(
cv
x3
)
(
cv
x2
)
cgoe
)
cgob
)
(
cv
x3
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cgox
x1
x2
)
(
cgon
(
cgol
(
cgon
x1
)
x2
)
)
)
⟶
wceq
cprv
(
copab
(
λ x1 x2 .
wceq
(
co
(
cv
x1
)
(
cv
x2
)
csate
)
(
co
(
cv
x1
)
com
cmap
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_retr
:
wceq
cretr
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wne
(
co
(
ccom
(
cv
x2
)
(
cv
x3
)
)
(
cres
cid
(
cuni
(
cv
x0
)
)
)
(
co
(
cv
x0
)
(
cv
x0
)
chtpy
)
)
c0
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x0
)
ccn
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
ccn
)
)
)
(proof)
Theorem
df_pconn
:
wceq
cpconn
(
crab
(
λ x0 .
wral
(
λ x1 .
wral
(
λ x2 .
wrex
(
λ x3 .
wa
(
wceq
(
cfv
cc0
(
cv
x3
)
)
(
cv
x1
)
)
(
wceq
(
cfv
c1
(
cv
x3
)
)
(
cv
x2
)
)
)
(
λ x3 .
co
cii
(
cv
x0
)
ccn
)
)
(
λ x2 .
cuni
(
cv
x0
)
)
)
(
λ x1 .
cuni
(
cv
x0
)
)
)
(
λ x0 .
ctop
)
)
(proof)
Theorem
df_sconn
:
wceq
csconn
(
crab
(
λ x0 .
wral
(
λ x1 .
wceq
(
cfv
cc0
(
cv
x1
)
)
(
cfv
c1
(
cv
x1
)
)
⟶
wbr
(
cv
x1
)
(
cxp
(
co
cc0
c1
cicc
)
(
csn
(
cfv
cc0
(
cv
x1
)
)
)
)
(
cfv
(
cv
x0
)
cphtpc
)
)
(
λ x1 .
co
cii
(
cv
x0
)
ccn
)
)
(
λ x0 .
cpconn
)
)
(proof)
Theorem
df_cvm
:
wceq
ccvm
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wa
(
wcel
(
cv
x3
)
(
cv
x4
)
)
(
wrex
(
λ x5 .
wa
(
wceq
(
cuni
(
cv
x5
)
)
(
cima
(
ccnv
(
cv
x2
)
)
(
cv
x4
)
)
)
(
wral
(
λ x6 .
wa
(
wral
(
λ x7 .
wceq
(
cin
(
cv
x6
)
(
cv
x7
)
)
c0
)
(
λ x7 .
cdif
(
cv
x5
)
(
csn
(
cv
x6
)
)
)
)
(
wcel
(
cres
(
cv
x2
)
(
cv
x6
)
)
(
co
(
co
(
cv
x0
)
(
cv
x6
)
crest
)
(
co
(
cv
x1
)
(
cv
x4
)
crest
)
chmeo
)
)
)
(
λ x6 .
cv
x5
)
)
)
(
λ x5 .
cdif
(
cpw
(
cv
x0
)
)
(
csn
c0
)
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cuni
(
cv
x1
)
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
ccn
)
)
)
(proof)
Theorem
df_goel
:
wceq
cgoe
(
cmpt
(
λ x0 .
cxp
com
com
)
(
λ x0 .
cop
c0
(
cv
x0
)
)
)
(proof)
Theorem
df_gona
:
wceq
cgna
(
cmpt
(
λ x0 .
cxp
cvv
cvv
)
(
λ x0 .
cop
c1o
(
cv
x0
)
)
)
(proof)
Theorem
df_goal
:
∀ x0 x1 :
ι → ο
.
wceq
(
cgol
x0
x1
)
(
cop
c2o
(
cop
x1
x0
)
)
(proof)
Theorem
df_sat
:
wceq
csat
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cres
(
crdg
(
cmpt
(
λ x2 .
cvv
)
(
λ x2 .
cun
(
cv
x2
)
(
copab
(
λ x3 x4 .
wrex
(
λ x5 .
wo
(
wrex
(
λ x6 .
wa
(
wceq
(
cv
x3
)
(
co
(
cfv
(
cv
x5
)
c1st
)
(
cfv
(
cv
x6
)
c1st
)
cgna
)
)
(
wceq
(
cv
x4
)
(
cdif
(
co
(
cv
x0
)
com
cmap
)
(
cin
(
cfv
(
cv
x5
)
c2nd
)
(
cfv
(
cv
x6
)
c2nd
)
)
)
)
)
(
λ x6 .
cv
x2
)
)
(
wrex
(
λ x6 .
wa
(
wceq
(
cv
x3
)
(
cgol
(
cfv
(
cv
x5
)
c1st
)
(
cv
x6
)
)
)
(
wceq
(
cv
x4
)
(
crab
(
λ x7 .
wral
(
λ x8 .
wcel
(
cun
(
csn
(
cop
(
cv
x6
)
(
cv
x8
)
)
)
(
cres
(
cv
x7
)
(
cdif
com
(
csn
(
cv
x6
)
)
)
)
)
(
cfv
(
cv
x5
)
c2nd
)
)
(
λ x8 .
cv
x0
)
)
(
λ x7 .
co
(
cv
x0
)
com
cmap
)
)
)
)
(
λ x6 .
com
)
)
)
(
λ x5 .
cv
x2
)
)
)
)
)
(
copab
(
λ x2 x3 .
wrex
(
λ x4 .
wrex
(
λ x5 .
wa
(
wceq
(
cv
x2
)
(
co
(
cv
x4
)
(
cv
x5
)
cgoe
)
)
(
wceq
(
cv
x3
)
(
crab
(
λ x6 .
wbr
(
cfv
(
cv
x4
)
(
cv
x6
)
)
(
cfv
(
cv
x5
)
(
cv
x6
)
)
(
cv
x1
)
)
(
λ x6 .
co
(
cv
x0
)
com
cmap
)
)
)
)
(
λ x5 .
com
)
)
(
λ x4 .
com
)
)
)
)
(
csuc
com
)
)
)
(proof)
Theorem
df_sate
:
wceq
csate
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cfv
(
cv
x1
)
(
cfv
com
(
co
(
cv
x0
)
(
cin
cep
(
cxp
(
cv
x0
)
(
cv
x0
)
)
)
csat
)
)
)
)
(proof)
Theorem
df_fmla
:
wceq
cfmla
(
cmpt
(
λ x0 .
csuc
com
)
(
λ x0 .
cdm
(
cfv
(
cv
x0
)
(
co
c0
c0
csat
)
)
)
)
(proof)
Theorem
df_gonot
:
∀ x0 :
ι → ο
.
wceq
(
cgon
x0
)
(
co
x0
x0
cgna
)
(proof)
Theorem
df_goan
:
wceq
cgoa
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cgon
(
co
(
cv
x0
)
(
cv
x1
)
cgna
)
)
)
(proof)
Theorem
df_goim
:
wceq
cgoi
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
cv
x0
)
(
cgon
(
cv
x1
)
)
cgna
)
)
(proof)
Theorem
df_goor
:
wceq
cgoo
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
cgon
(
cv
x0
)
)
(
cv
x1
)
cgoi
)
)
(proof)
Theorem
df_gobi
:
wceq
cgob
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
co
(
cv
x0
)
(
cv
x1
)
cgoi
)
(
co
(
cv
x1
)
(
cv
x0
)
cgoi
)
cgoa
)
)
(proof)
Theorem
df_goeq
:
wceq
cgoq
(
cmpt2
(
λ x0 x1 .
com
)
(
λ x0 x1 .
com
)
(
λ x0 x1 .
csb
(
csuc
(
cun
(
cv
x0
)
(
cv
x1
)
)
)
(
λ x2 .
cgol
(
co
(
co
(
cv
x2
)
(
cv
x0
)
cgoe
)
(
co
(
cv
x2
)
(
cv
x1
)
cgoe
)
cgob
)
(
cv
x2
)
)
)
)
(proof)
Theorem
df_goex
:
∀ x0 x1 :
ι → ο
.
wceq
(
cgox
x0
x1
)
(
cgon
(
cgol
(
cgon
x0
)
x1
)
)
(proof)
Theorem
df_prv
:
wceq
cprv
(
copab
(
λ x0 x1 .
wceq
(
co
(
cv
x0
)
(
cv
x1
)
csate
)
(
co
(
cv
x0
)
com
cmap
)
)
)
(proof)