Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr9jo../74c8e..
PUfX8../b2daf..
vout
Pr9jo../9062d.. 24.87 bars
TMRhi../28b5d.. ownership of 4d265.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMP4k../799c0.. ownership of 7b0fc.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUTSf../6900b.. doc published by Pr4zB..
Param 4402e.. : ι(ιιο) → ο
Param cf2df.. : ι(ιιο) → ο
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param setminussetminus : ιιι
Param SingSing : ιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)not (x0 x3 x4)x5)x5
Definition c5756.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)not (x0 x2 x5)x0 x3 x5x0 x4 x5x6)x6
Definition 2de86.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6not (x0 x3 x6)x0 x4 x6not (x0 x5 x6)x7)x7
Definition 796c4.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7not (x0 x4 x7)not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 0c647.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (796c4.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)not (x0 x1 x8)x0 x2 x8not (x0 x3 x8)not (x0 x4 x8)not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition e2fd7.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (0c647.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)not (x0 x2 x9)not (x0 x3 x9)x0 x4 x9not (x0 x5 x9)not (x0 x6 x9)x0 x7 x9x0 x8 x9x10)x10
Definition 23d0b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (e2fd7.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10not (x0 x2 x10)x0 x3 x10not (x0 x4 x10)not (x0 x5 x10)x0 x6 x10not (x0 x7 x10)x0 x8 x10not (x0 x9 x10)x11)x11
Definition 62523.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)not (x0 x2 x5)not (x0 x3 x5)x0 x4 x5x6)x6
Definition 659a1.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (62523.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6not (x0 x4 x6)x0 x5 x6x7)x7
Definition ba9c9.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (659a1.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7not (x0 x4 x7)x0 x5 x7not (x0 x6 x7)x8)x8
Definition 70101.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (ba9c9.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)not (x0 x1 x8)not (x0 x2 x8)x0 x3 x8not (x0 x4 x8)not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition ee178.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (70101.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)x0 x2 x9not (x0 x3 x9)not (x0 x4 x9)not (x0 x5 x9)not (x0 x6 x9)x0 x7 x9x0 x8 x9x10)x10
Definition c6b73.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (ee178.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10not (x0 x2 x10)x0 x3 x10x0 x4 x10not (x0 x5 x10)not (x0 x6 x10)not (x0 x7 x10)not (x0 x8 x10)not (x0 x9 x10)x11)x11
Definition 1f676.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . ∀ x12 : ο . (c6b73.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10(x1 = x11∀ x13 : ο . x13)(x2 = x11∀ x13 : ο . x13)(x3 = x11∀ x13 : ο . x13)(x4 = x11∀ x13 : ο . x13)(x5 = x11∀ x13 : ο . x13)(x6 = x11∀ x13 : ο . x13)(x7 = x11∀ x13 : ο . x13)(x8 = x11∀ x13 : ο . x13)(x9 = x11∀ x13 : ο . x13)(x10 = x11∀ x13 : ο . x13)x0 x1 x11x0 x2 x11not (x0 x3 x11)x0 x4 x11not (x0 x5 x11)not (x0 x6 x11)not (x0 x7 x11)x0 x8 x11not (x0 x9 x11)not (x0 x10 x11)x12)x12
Definition 36d58.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition d03a7.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (36d58.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)x0 x1 x8not (x0 x2 x8)not (x0 x3 x8)not (x0 x4 x8)not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition a62c3.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (d03a7.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)not (x0 x2 x9)x0 x3 x9not (x0 x4 x9)not (x0 x5 x9)x0 x6 x9not (x0 x7 x9)x0 x8 x9x10)x10
Definition 6410a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (a62c3.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10x0 x2 x10not (x0 x3 x10)not (x0 x4 x10)x0 x5 x10not (x0 x6 x10)not (x0 x7 x10)not (x0 x8 x10)not (x0 x9 x10)x11)x11
Definition 6c968.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . ∀ x12 : ο . (6410a.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10(x1 = x11∀ x13 : ο . x13)(x2 = x11∀ x13 : ο . x13)(x3 = x11∀ x13 : ο . x13)(x4 = x11∀ x13 : ο . x13)(x5 = x11∀ x13 : ο . x13)(x6 = x11∀ x13 : ο . x13)(x7 = x11∀ x13 : ο . x13)(x8 = x11∀ x13 : ο . x13)(x9 = x11∀ x13 : ο . x13)(x10 = x11∀ x13 : ο . x13)not (x0 x1 x11)x0 x2 x11not (x0 x3 x11)not (x0 x4 x11)not (x0 x5 x11)not (x0 x6 x11)x0 x7 x11x0 x8 x11not (x0 x9 x11)not (x0 x10 x11)x12)x12
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known 9fd0b.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x023d0b.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13∀ x14 : ο . (x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)not (x2 x10 x3)not (x2 x11 x3)not (x2 x12 x3)not (x2 x13 x3)x14)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)not (x2 x10 x3)not (x2 x11 x3)x2 x12 x3not (x2 x13 x3)x14)x14
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known SingISingI : ∀ x0 . x0Sing x0
Theorem 4d265.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x023d0b.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13∀ x14 : ο . (∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x01f676.. x2 x15 x16 x17 x18 x19 x20 x3 x21 x22 x23 x24x14)(∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0∀ x23 . x23x0∀ x24 . x24x06c968.. x2 x15 x16 x17 x18 x19 x20 x21 x22 x23 x3 x24x14)x14 (proof)