Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrRSz..
/
4121f..
PUMFE..
/
adb85..
vout
PrRSz..
/
0769f..
0.10 bars
TMQAj..
/
f876e..
ownership of
9c69f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJGc..
/
aefdc..
ownership of
7666a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVsJ..
/
2438e..
ownership of
80359..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYTP..
/
e14bf..
ownership of
67968..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQoa..
/
1f03c..
ownership of
b76fd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNCQ..
/
8a012..
ownership of
3c2c5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ1A..
/
2601d..
ownership of
8bb87..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQTG..
/
1ff9d..
ownership of
48e0a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMd2q..
/
09635..
ownership of
2f561..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdMM..
/
f6897..
ownership of
86ee6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdo5..
/
54eeb..
ownership of
1e289..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGCB..
/
83b5c..
ownership of
421b0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbuH..
/
a5e65..
ownership of
b43f2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUSV..
/
2f643..
ownership of
fda94..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSkQ..
/
87d2e..
ownership of
010d9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TML6t..
/
bab16..
ownership of
7694a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGmJ..
/
97c8e..
ownership of
6f144..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJbh..
/
d487c..
ownership of
a42ab..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYXj..
/
39006..
ownership of
68419..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVza..
/
1026f..
ownership of
b977d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXsW..
/
b66c7..
ownership of
c11f2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJoh..
/
79c4f..
ownership of
8338c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQcc..
/
45d2b..
ownership of
fe505..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMd5z..
/
61301..
ownership of
ad87e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcYH..
/
76636..
ownership of
5cb6b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVS2..
/
73833..
ownership of
5ce32..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbfJ..
/
0bbb7..
ownership of
65caf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFRy..
/
5b29b..
ownership of
7ac8e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGLM..
/
59362..
ownership of
a328c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdsE..
/
fcc39..
ownership of
61b5c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMUg..
/
8ba7f..
ownership of
e3037..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHin..
/
50102..
ownership of
1b29d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGC6..
/
d8f68..
ownership of
db59e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRk4..
/
5b188..
ownership of
8424b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNLj..
/
92e42..
ownership of
b09ad..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGJV..
/
1cbd9..
ownership of
4f21c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUPG8..
/
006b1..
doc published by
PrCmT..
Known
df_gbow__df_gbo__ax_bgbltosilva__ax_tgoldbachgt__ax_hgprmladder__ax_bgbltosilvaOLD__ax_hgprmladderOLD__ax_tgoldbachgtOLD__df_upwlks__df_spr__df_mgmhm__df_submgm__df_cllaw__df_comlaw__df_asslaw__df_intop__df_clintop__df_assintop
:
∀ x0 : ο .
(
wceq
cgbow
(
crab
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wceq
(
cv
x1
)
(
co
(
co
(
cv
x2
)
(
cv
x3
)
caddc
)
(
cv
x4
)
caddc
)
)
(
λ x4 .
cprime
)
)
(
λ x3 .
cprime
)
)
(
λ x2 .
cprime
)
)
(
λ x1 .
codd
)
)
⟶
wceq
cgbo
(
crab
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wa
(
w3a
(
wcel
(
cv
x2
)
codd
)
(
wcel
(
cv
x3
)
codd
)
(
wcel
(
cv
x4
)
codd
)
)
(
wceq
(
cv
x1
)
(
co
(
co
(
cv
x2
)
(
cv
x3
)
caddc
)
(
cv
x4
)
caddc
)
)
)
(
λ x4 .
cprime
)
)
(
λ x3 .
cprime
)
)
(
λ x2 .
cprime
)
)
(
λ x1 .
codd
)
)
⟶
(
∀ x1 :
ι → ο
.
w3a
(
wcel
x1
ceven
)
(
wbr
c4
x1
clt
)
(
wbr
x1
(
co
c4
(
co
(
cdc
c1
cc0
)
(
cdc
c1
c8
)
cexp
)
cmul
)
cle
)
⟶
wcel
x1
cgbe
)
⟶
(
∀ x1 :
ι →
ι →
ι →
ι →
ι →
ι → ο
.
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
wceq
(
x2
x3
)
(
crab
(
λ x4 .
wn
(
wbr
c2
(
cv
x4
)
cdvds
)
)
(
λ x4 .
cz
)
)
)
⟶
(
∀ x3 x4 x5 x6 x7 .
wceq
(
x1
x3
x4
x5
x6
x7
)
(
crab
(
λ x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
wrex
(
λ x11 .
wa
(
w3a
(
wcel
(
cv
x9
)
(
x2
x4
)
)
(
wcel
(
cv
x10
)
(
x2
x4
)
)
(
wcel
(
cv
x11
)
(
x2
x4
)
)
)
(
wceq
(
cv
x8
)
(
co
(
co
(
cv
x9
)
(
cv
x10
)
caddc
)
(
cv
x11
)
caddc
)
)
)
(
λ x11 .
cprime
)
)
(
λ x10 .
cprime
)
)
(
λ x9 .
cprime
)
)
(
λ x8 .
x2
x4
)
)
)
⟶
∀ x3 x4 x5 x6 .
wrex
(
λ x7 .
wa
(
wbr
(
cv
x7
)
(
co
(
cdc
c1
cc0
)
(
cdc
c2
c7
)
cexp
)
cle
)
(
wral
(
λ x8 .
wbr
(
cv
x7
)
(
cv
x8
)
clt
⟶
wcel
(
cv
x8
)
(
x1
x3
x8
x4
x5
x6
)
)
x2
)
)
(
λ x7 .
cn
)
)
⟶
wrex
(
λ x1 .
wrex
(
λ x2 .
wa
(
w3a
(
wceq
(
cfv
cc0
(
cv
x2
)
)
c7
)
(
wceq
(
cfv
c1
(
cv
x2
)
)
(
cdc
c1
c3
)
)
(
wceq
(
cfv
(
cv
x1
)
(
cv
x2
)
)
(
co
(
cdc
c8
c9
)
(
co
(
cdc
c1
cc0
)
(
cdc
c2
c9
)
cexp
)
cmul
)
)
)
(
wral
(
λ x3 .
w3a
(
wcel
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cdif
cprime
(
csn
c2
)
)
)
(
wbr
(
co
(
cfv
(
co
(
cv
x3
)
c1
caddc
)
(
cv
x2
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
cmin
)
(
co
(
co
c4
(
co
(
cdc
c1
cc0
)
(
cdc
c1
c8
)
cexp
)
cmul
)
c4
cmin
)
clt
)
(
wbr
c4
(
co
(
cfv
(
co
(
cv
x3
)
c1
caddc
)
(
cv
x2
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
cmin
)
clt
)
)
(
λ x3 .
co
cc0
(
cv
x1
)
cfzo
)
)
)
(
λ x2 .
cfv
(
cv
x1
)
ciccp
)
)
(
λ x1 .
cfv
c3
cuz
)
⟶
(
∀ x1 :
ι → ο
.
w3a
(
wcel
x1
ceven
)
(
wbr
c4
x1
clt
)
(
wbr
x1
(
co
c4
(
co
c10
(
cdc
c1
c8
)
cexp
)
cmul
)
cle
)
⟶
wcel
x1
cgbe
)
⟶
wrex
(
λ x1 .
wrex
(
λ x2 .
wa
(
w3a
(
wceq
(
cfv
cc0
(
cv
x2
)
)
c7
)
(
wceq
(
cfv
c1
(
cv
x2
)
)
(
cdc
c1
c3
)
)
(
wceq
(
cfv
(
cv
x1
)
(
cv
x2
)
)
(
co
(
cdc
c8
c9
)
(
co
c10
(
cdc
c2
c9
)
cexp
)
cmul
)
)
)
(
wral
(
λ x3 .
w3a
(
wcel
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cdif
cprime
(
csn
c2
)
)
)
(
wbr
(
co
(
cfv
(
co
(
cv
x3
)
c1
caddc
)
(
cv
x2
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
cmin
)
(
co
(
co
c4
(
co
c10
(
cdc
c1
c8
)
cexp
)
cmul
)
c4
cmin
)
clt
)
(
wbr
c4
(
co
(
cfv
(
co
(
cv
x3
)
c1
caddc
)
(
cv
x2
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
cmin
)
clt
)
)
(
λ x3 .
co
cc0
(
cv
x1
)
cfzo
)
)
)
(
λ x2 .
cfv
(
cv
x1
)
ciccp
)
)
(
λ x1 .
cfv
c3
cuz
)
⟶
wrex
(
λ x1 .
wa
(
wbr
(
cv
x1
)
(
co
c10
(
cdc
c2
c7
)
cexp
)
cle
)
(
wral
(
λ x2 .
wbr
(
cv
x1
)
(
cv
x2
)
clt
⟶
wcel
(
cv
x2
)
cgbo
)
(
λ x2 .
codd
)
)
)
(
λ x1 .
cn
)
⟶
wceq
cupwlks
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
w3a
(
wcel
(
cv
x2
)
(
cword
(
cdm
(
cfv
(
cv
x1
)
ciedg
)
)
)
)
(
wf
(
co
cc0
(
cfv
(
cv
x2
)
chash
)
cfz
)
(
cfv
(
cv
x1
)
cvtx
)
(
cv
x3
)
)
(
wral
(
λ x4 .
wceq
(
cfv
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
ciedg
)
)
(
cpr
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
co
(
cv
x4
)
c1
caddc
)
(
cv
x3
)
)
)
)
(
λ x4 .
co
cc0
(
cfv
(
cv
x2
)
chash
)
cfzo
)
)
)
)
)
⟶
wceq
cspr
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cab
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wceq
(
cv
x2
)
(
cpr
(
cv
x3
)
(
cv
x4
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
)
)
⟶
wceq
cmgmhm
(
cmpt2
(
λ x1 x2 .
cmgm
)
(
λ x1 x2 .
cmgm
)
(
λ x1 x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x3
)
)
(
co
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
cplusg
)
)
)
(
λ x5 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
co
(
cfv
(
cv
x2
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
cmap
)
)
)
⟶
wceq
csubmgm
(
cmpt
(
λ x1 .
cmgm
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wcel
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
wceq
ccllaw
(
copab
(
λ x1 x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wcel
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x1
)
)
(
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
)
⟶
wceq
ccomlaw
(
copab
(
λ x1 x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x1
)
)
(
co
(
cv
x4
)
(
cv
x3
)
(
cv
x1
)
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
)
⟶
wceq
casslaw
(
copab
(
λ x1 x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
co
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x1
)
)
(
cv
x5
)
(
cv
x1
)
)
(
co
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x1
)
)
(
cv
x1
)
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
)
⟶
wceq
cintop
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
cv
x2
)
(
cxp
(
cv
x1
)
(
cv
x1
)
)
cmap
)
)
⟶
wceq
cclintop
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cv
x1
)
(
cv
x1
)
cintop
)
)
⟶
wceq
cassintop
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wbr
(
cv
x2
)
(
cv
x1
)
casslaw
)
(
λ x2 .
cfv
(
cv
x1
)
cclintop
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_gbow
:
wceq
cgbow
(
crab
(
λ x0 .
wrex
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wceq
(
cv
x0
)
(
co
(
co
(
cv
x1
)
(
cv
x2
)
caddc
)
(
cv
x3
)
caddc
)
)
(
λ x3 .
cprime
)
)
(
λ x2 .
cprime
)
)
(
λ x1 .
cprime
)
)
(
λ x0 .
codd
)
)
(proof)
Theorem
df_gbo
:
wceq
cgbo
(
crab
(
λ x0 .
wrex
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wa
(
w3a
(
wcel
(
cv
x1
)
codd
)
(
wcel
(
cv
x2
)
codd
)
(
wcel
(
cv
x3
)
codd
)
)
(
wceq
(
cv
x0
)
(
co
(
co
(
cv
x1
)
(
cv
x2
)
caddc
)
(
cv
x3
)
caddc
)
)
)
(
λ x3 .
cprime
)
)
(
λ x2 .
cprime
)
)
(
λ x1 .
cprime
)
)
(
λ x0 .
codd
)
)
(proof)
Theorem
ax_bgbltosilva
:
∀ x0 :
ι → ο
.
w3a
(
wcel
x0
ceven
)
(
wbr
c4
x0
clt
)
(
wbr
x0
(
co
c4
(
co
(
cdc
c1
cc0
)
(
cdc
c1
c8
)
cexp
)
cmul
)
cle
)
⟶
wcel
x0
cgbe
(proof)
Theorem
ax_tgoldbachgt
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι → ο
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
wceq
(
x1
x2
)
(
crab
(
λ x3 .
wn
(
wbr
c2
(
cv
x3
)
cdvds
)
)
(
λ x3 .
cz
)
)
)
⟶
(
∀ x2 x3 x4 x5 x6 .
wceq
(
x0
x2
x3
x4
x5
x6
)
(
crab
(
λ x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wrex
(
λ x10 .
wa
(
w3a
(
wcel
(
cv
x8
)
(
x1
x3
)
)
(
wcel
(
cv
x9
)
(
x1
x3
)
)
(
wcel
(
cv
x10
)
(
x1
x3
)
)
)
(
wceq
(
cv
x7
)
(
co
(
co
(
cv
x8
)
(
cv
x9
)
caddc
)
(
cv
x10
)
caddc
)
)
)
(
λ x10 .
cprime
)
)
(
λ x9 .
cprime
)
)
(
λ x8 .
cprime
)
)
(
λ x7 .
x1
x3
)
)
)
⟶
∀ x2 x3 x4 x5 .
wrex
(
λ x6 .
wa
(
wbr
(
cv
x6
)
(
co
(
cdc
c1
cc0
)
(
cdc
c2
c7
)
cexp
)
cle
)
(
wral
(
λ x7 .
wbr
(
cv
x6
)
(
cv
x7
)
clt
⟶
wcel
(
cv
x7
)
(
x0
x2
x7
x3
x4
x5
)
)
x1
)
)
(
λ x6 .
cn
)
(proof)
Theorem
ax_hgprmladder
:
wrex
(
λ x0 .
wrex
(
λ x1 .
wa
(
w3a
(
wceq
(
cfv
cc0
(
cv
x1
)
)
c7
)
(
wceq
(
cfv
c1
(
cv
x1
)
)
(
cdc
c1
c3
)
)
(
wceq
(
cfv
(
cv
x0
)
(
cv
x1
)
)
(
co
(
cdc
c8
c9
)
(
co
(
cdc
c1
cc0
)
(
cdc
c2
c9
)
cexp
)
cmul
)
)
)
(
wral
(
λ x2 .
w3a
(
wcel
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cdif
cprime
(
csn
c2
)
)
)
(
wbr
(
co
(
cfv
(
co
(
cv
x2
)
c1
caddc
)
(
cv
x1
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cmin
)
(
co
(
co
c4
(
co
(
cdc
c1
cc0
)
(
cdc
c1
c8
)
cexp
)
cmul
)
c4
cmin
)
clt
)
(
wbr
c4
(
co
(
cfv
(
co
(
cv
x2
)
c1
caddc
)
(
cv
x1
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cmin
)
clt
)
)
(
λ x2 .
co
cc0
(
cv
x0
)
cfzo
)
)
)
(
λ x1 .
cfv
(
cv
x0
)
ciccp
)
)
(
λ x0 .
cfv
c3
cuz
)
(proof)
Theorem
ax_bgbltosilvaOLD
:
∀ x0 :
ι → ο
.
w3a
(
wcel
x0
ceven
)
(
wbr
c4
x0
clt
)
(
wbr
x0
(
co
c4
(
co
c10
(
cdc
c1
c8
)
cexp
)
cmul
)
cle
)
⟶
wcel
x0
cgbe
(proof)
Theorem
ax_hgprmladderOLD
:
wrex
(
λ x0 .
wrex
(
λ x1 .
wa
(
w3a
(
wceq
(
cfv
cc0
(
cv
x1
)
)
c7
)
(
wceq
(
cfv
c1
(
cv
x1
)
)
(
cdc
c1
c3
)
)
(
wceq
(
cfv
(
cv
x0
)
(
cv
x1
)
)
(
co
(
cdc
c8
c9
)
(
co
c10
(
cdc
c2
c9
)
cexp
)
cmul
)
)
)
(
wral
(
λ x2 .
w3a
(
wcel
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cdif
cprime
(
csn
c2
)
)
)
(
wbr
(
co
(
cfv
(
co
(
cv
x2
)
c1
caddc
)
(
cv
x1
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cmin
)
(
co
(
co
c4
(
co
c10
(
cdc
c1
c8
)
cexp
)
cmul
)
c4
cmin
)
clt
)
(
wbr
c4
(
co
(
cfv
(
co
(
cv
x2
)
c1
caddc
)
(
cv
x1
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cmin
)
clt
)
)
(
λ x2 .
co
cc0
(
cv
x0
)
cfzo
)
)
)
(
λ x1 .
cfv
(
cv
x0
)
ciccp
)
)
(
λ x0 .
cfv
c3
cuz
)
(proof)
Theorem
ax_tgoldbachgtOLD
:
wrex
(
λ x0 .
wa
(
wbr
(
cv
x0
)
(
co
c10
(
cdc
c2
c7
)
cexp
)
cle
)
(
wral
(
λ x1 .
wbr
(
cv
x0
)
(
cv
x1
)
clt
⟶
wcel
(
cv
x1
)
cgbo
)
(
λ x1 .
codd
)
)
)
(
λ x0 .
cn
)
(proof)
Theorem
df_upwlks
:
wceq
cupwlks
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
w3a
(
wcel
(
cv
x1
)
(
cword
(
cdm
(
cfv
(
cv
x0
)
ciedg
)
)
)
)
(
wf
(
co
cc0
(
cfv
(
cv
x1
)
chash
)
cfz
)
(
cfv
(
cv
x0
)
cvtx
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wceq
(
cfv
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x0
)
ciedg
)
)
(
cpr
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
co
(
cv
x3
)
c1
caddc
)
(
cv
x2
)
)
)
)
(
λ x3 .
co
cc0
(
cfv
(
cv
x1
)
chash
)
cfzo
)
)
)
)
)
(proof)
Theorem
df_spr
:
wceq
cspr
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cab
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wceq
(
cv
x1
)
(
cpr
(
cv
x2
)
(
cv
x3
)
)
)
(
λ x3 .
cv
x0
)
)
(
λ x2 .
cv
x0
)
)
)
)
(proof)
Theorem
df_mgmhm
:
wceq
cmgmhm
(
cmpt2
(
λ x0 x1 .
cmgm
)
(
λ x0 x1 .
cmgm
)
(
λ x0 x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x2
)
)
(
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
)
(
λ x4 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
co
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
cmap
)
)
)
(proof)
Theorem
df_submgm
:
wceq
csubmgm
(
cmpt
(
λ x0 .
cmgm
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wcel
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)
Theorem
df_cllaw
:
wceq
ccllaw
(
copab
(
λ x0 x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wcel
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x0
)
)
(
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
)
(proof)
Theorem
df_comlaw
:
wceq
ccomlaw
(
copab
(
λ x0 x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x0
)
)
(
co
(
cv
x3
)
(
cv
x2
)
(
cv
x0
)
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
)
(proof)
Theorem
df_asslaw
:
wceq
casslaw
(
copab
(
λ x0 x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x0
)
)
(
cv
x4
)
(
cv
x0
)
)
(
co
(
cv
x2
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x0
)
)
(
cv
x0
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
)
(proof)
Theorem
df_intop
:
wceq
cintop
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
cv
x1
)
(
cxp
(
cv
x0
)
(
cv
x0
)
)
cmap
)
)
(proof)
Theorem
df_clintop
:
wceq
cclintop
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cv
x0
)
(
cv
x0
)
cintop
)
)
(proof)
Theorem
df_assintop
:
wceq
cassintop
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wbr
(
cv
x1
)
(
cv
x0
)
casslaw
)
(
λ x1 .
cfv
(
cv
x0
)
cclintop
)
)
)
(proof)