Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrRSz../4121f..
PUMFE../adb85..
vout
PrRSz../0769f.. 0.10 bars
TMQAj../f876e.. ownership of 9c69f.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMJGc../aefdc.. ownership of 7666a.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMVsJ../2438e.. ownership of 80359.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMYTP../e14bf.. ownership of 67968.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMQoa../1f03c.. ownership of b76fd.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMNCQ../8a012.. ownership of 3c2c5.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMZ1A../2601d.. ownership of 8bb87.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMQTG../1ff9d.. ownership of 48e0a.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMd2q../09635.. ownership of 2f561.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMdMM../f6897.. ownership of 86ee6.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMdo5../54eeb.. ownership of 1e289.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMGCB../83b5c.. ownership of 421b0.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMbuH../a5e65.. ownership of b43f2.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMUSV../2f643.. ownership of fda94.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMSkQ../87d2e.. ownership of 010d9.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TML6t../bab16.. ownership of 7694a.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMGmJ../97c8e.. ownership of 6f144.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMJbh../d487c.. ownership of a42ab.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMYXj../39006.. ownership of 68419.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMVza../1026f.. ownership of b977d.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMXsW../b66c7.. ownership of c11f2.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMJoh../79c4f.. ownership of 8338c.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMQcc../45d2b.. ownership of fe505.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMd5z../61301.. ownership of ad87e.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMcYH../76636.. ownership of 5cb6b.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMVS2../73833.. ownership of 5ce32.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMbfJ../0bbb7.. ownership of 65caf.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMFRy../5b29b.. ownership of 7ac8e.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMGLM../59362.. ownership of a328c.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMdsE../fcc39.. ownership of 61b5c.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMMUg../8ba7f.. ownership of e3037.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMHin../50102.. ownership of 1b29d.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMGC6../d8f68.. ownership of db59e.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMRk4../5b188.. ownership of 8424b.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMNLj../92e42.. ownership of b09ad.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMGJV../1cbd9.. ownership of 4f21c.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
PUPG8../006b1.. doc published by PrCmT..
Known df_gbow__df_gbo__ax_bgbltosilva__ax_tgoldbachgt__ax_hgprmladder__ax_bgbltosilvaOLD__ax_hgprmladderOLD__ax_tgoldbachgtOLD__df_upwlks__df_spr__df_mgmhm__df_submgm__df_cllaw__df_comlaw__df_asslaw__df_intop__df_clintop__df_assintop : ∀ x0 : ο . (wceq cgbow (crab (λ x1 . wrex (λ x2 . wrex (λ x3 . wrex (λ x4 . wceq (cv x1) (co (co (cv x2) (cv x3) caddc) (cv x4) caddc)) (λ x4 . cprime)) (λ x3 . cprime)) (λ x2 . cprime)) (λ x1 . codd))wceq cgbo (crab (λ x1 . wrex (λ x2 . wrex (λ x3 . wrex (λ x4 . wa (w3a (wcel (cv x2) codd) (wcel (cv x3) codd) (wcel (cv x4) codd)) (wceq (cv x1) (co (co (cv x2) (cv x3) caddc) (cv x4) caddc))) (λ x4 . cprime)) (λ x3 . cprime)) (λ x2 . cprime)) (λ x1 . codd))(∀ x1 : ι → ο . w3a (wcel x1 ceven) (wbr c4 x1 clt) (wbr x1 (co c4 (co (cdc c1 cc0) (cdc c1 c8) cexp) cmul) cle)wcel x1 cgbe)(∀ x1 : ι → ι → ι → ι → ι → ι → ο . ∀ x2 : ι → ι → ο . (∀ x3 . wceq (x2 x3) (crab (λ x4 . wn (wbr c2 (cv x4) cdvds)) (λ x4 . cz)))(∀ x3 x4 x5 x6 x7 . wceq (x1 x3 x4 x5 x6 x7) (crab (λ x8 . wrex (λ x9 . wrex (λ x10 . wrex (λ x11 . wa (w3a (wcel (cv x9) (x2 x4)) (wcel (cv x10) (x2 x4)) (wcel (cv x11) (x2 x4))) (wceq (cv x8) (co (co (cv x9) (cv x10) caddc) (cv x11) caddc))) (λ x11 . cprime)) (λ x10 . cprime)) (λ x9 . cprime)) (λ x8 . x2 x4)))∀ x3 x4 x5 x6 . wrex (λ x7 . wa (wbr (cv x7) (co (cdc c1 cc0) (cdc c2 c7) cexp) cle) (wral (λ x8 . wbr (cv x7) (cv x8) cltwcel (cv x8) (x1 x3 x8 x4 x5 x6)) x2)) (λ x7 . cn))wrex (λ x1 . wrex (λ x2 . wa (w3a (wceq (cfv cc0 (cv x2)) c7) (wceq (cfv c1 (cv x2)) (cdc c1 c3)) (wceq (cfv (cv x1) (cv x2)) (co (cdc c8 c9) (co (cdc c1 cc0) (cdc c2 c9) cexp) cmul))) (wral (λ x3 . w3a (wcel (cfv (cv x3) (cv x2)) (cdif cprime (csn c2))) (wbr (co (cfv (co (cv x3) c1 caddc) (cv x2)) (cfv (cv x3) (cv x2)) cmin) (co (co c4 (co (cdc c1 cc0) (cdc c1 c8) cexp) cmul) c4 cmin) clt) (wbr c4 (co (cfv (co (cv x3) c1 caddc) (cv x2)) (cfv (cv x3) (cv x2)) cmin) clt)) (λ x3 . co cc0 (cv x1) cfzo))) (λ x2 . cfv (cv x1) ciccp)) (λ x1 . cfv c3 cuz)(∀ x1 : ι → ο . w3a (wcel x1 ceven) (wbr c4 x1 clt) (wbr x1 (co c4 (co c10 (cdc c1 c8) cexp) cmul) cle)wcel x1 cgbe)wrex (λ x1 . wrex (λ x2 . wa (w3a (wceq (cfv cc0 (cv x2)) c7) (wceq (cfv c1 (cv x2)) (cdc c1 c3)) (wceq (cfv (cv x1) (cv x2)) (co (cdc c8 c9) (co c10 (cdc c2 c9) cexp) cmul))) (wral (λ x3 . w3a (wcel (cfv (cv x3) (cv x2)) (cdif cprime (csn c2))) (wbr (co (cfv (co (cv x3) c1 caddc) (cv x2)) (cfv (cv x3) (cv x2)) cmin) (co (co c4 (co c10 (cdc c1 c8) cexp) cmul) c4 cmin) clt) (wbr c4 (co (cfv (co (cv x3) c1 caddc) (cv x2)) (cfv (cv x3) (cv x2)) cmin) clt)) (λ x3 . co cc0 (cv x1) cfzo))) (λ x2 . cfv (cv x1) ciccp)) (λ x1 . cfv c3 cuz)wrex (λ x1 . wa (wbr (cv x1) (co c10 (cdc c2 c7) cexp) cle) (wral (λ x2 . wbr (cv x1) (cv x2) cltwcel (cv x2) cgbo) (λ x2 . codd))) (λ x1 . cn)wceq cupwlks (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . w3a (wcel (cv x2) (cword (cdm (cfv (cv x1) ciedg)))) (wf (co cc0 (cfv (cv x2) chash) cfz) (cfv (cv x1) cvtx) (cv x3)) (wral (λ x4 . wceq (cfv (cfv (cv x4) (cv x2)) (cfv (cv x1) ciedg)) (cpr (cfv (cv x4) (cv x3)) (cfv (co (cv x4) c1 caddc) (cv x3)))) (λ x4 . co cc0 (cfv (cv x2) chash) cfzo)))))wceq cspr (cmpt (λ x1 . cvv) (λ x1 . cab (λ x2 . wrex (λ x3 . wrex (λ x4 . wceq (cv x2) (cpr (cv x3) (cv x4))) (λ x4 . cv x1)) (λ x3 . cv x1))))wceq cmgmhm (cmpt2 (λ x1 x2 . cmgm) (λ x1 x2 . cmgm) (λ x1 x2 . crab (λ x3 . wral (λ x4 . wral (λ x5 . wceq (cfv (co (cv x4) (cv x5) (cfv (cv x1) cplusg)) (cv x3)) (co (cfv (cv x4) (cv x3)) (cfv (cv x5) (cv x3)) (cfv (cv x2) cplusg))) (λ x5 . cfv (cv x1) cbs)) (λ x4 . cfv (cv x1) cbs)) (λ x3 . co (cfv (cv x2) cbs) (cfv (cv x1) cbs) cmap)))wceq csubmgm (cmpt (λ x1 . cmgm) (λ x1 . crab (λ x2 . wral (λ x3 . wral (λ x4 . wcel (co (cv x3) (cv x4) (cfv (cv x1) cplusg)) (cv x2)) (λ x4 . cv x2)) (λ x3 . cv x2)) (λ x2 . cpw (cfv (cv x1) cbs))))wceq ccllaw (copab (λ x1 x2 . wral (λ x3 . wral (λ x4 . wcel (co (cv x3) (cv x4) (cv x1)) (cv x2)) (λ x4 . cv x2)) (λ x3 . cv x2)))wceq ccomlaw (copab (λ x1 x2 . wral (λ x3 . wral (λ x4 . wceq (co (cv x3) (cv x4) (cv x1)) (co (cv x4) (cv x3) (cv x1))) (λ x4 . cv x2)) (λ x3 . cv x2)))wceq casslaw (copab (λ x1 x2 . wral (λ x3 . wral (λ x4 . wral (λ x5 . wceq (co (co (cv x3) (cv x4) (cv x1)) (cv x5) (cv x1)) (co (cv x3) (co (cv x4) (cv x5) (cv x1)) (cv x1))) (λ x5 . cv x2)) (λ x4 . cv x2)) (λ x3 . cv x2)))wceq cintop (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . co (cv x2) (cxp (cv x1) (cv x1)) cmap))wceq cclintop (cmpt (λ x1 . cvv) (λ x1 . co (cv x1) (cv x1) cintop))wceq cassintop (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wbr (cv x2) (cv x1) casslaw) (λ x2 . cfv (cv x1) cclintop)))x0)x0
Theorem df_gbow : wceq cgbow (crab (λ x0 . wrex (λ x1 . wrex (λ x2 . wrex (λ x3 . wceq (cv x0) (co (co (cv x1) (cv x2) caddc) (cv x3) caddc)) (λ x3 . cprime)) (λ x2 . cprime)) (λ x1 . cprime)) (λ x0 . codd)) (proof)
Theorem df_gbo : wceq cgbo (crab (λ x0 . wrex (λ x1 . wrex (λ x2 . wrex (λ x3 . wa (w3a (wcel (cv x1) codd) (wcel (cv x2) codd) (wcel (cv x3) codd)) (wceq (cv x0) (co (co (cv x1) (cv x2) caddc) (cv x3) caddc))) (λ x3 . cprime)) (λ x2 . cprime)) (λ x1 . cprime)) (λ x0 . codd)) (proof)
Theorem ax_bgbltosilva : ∀ x0 : ι → ο . w3a (wcel x0 ceven) (wbr c4 x0 clt) (wbr x0 (co c4 (co (cdc c1 cc0) (cdc c1 c8) cexp) cmul) cle)wcel x0 cgbe (proof)
Theorem ax_tgoldbachgt : ∀ x0 : ι → ι → ι → ι → ι → ι → ο . ∀ x1 : ι → ι → ο . (∀ x2 . wceq (x1 x2) (crab (λ x3 . wn (wbr c2 (cv x3) cdvds)) (λ x3 . cz)))(∀ x2 x3 x4 x5 x6 . wceq (x0 x2 x3 x4 x5 x6) (crab (λ x7 . wrex (λ x8 . wrex (λ x9 . wrex (λ x10 . wa (w3a (wcel (cv x8) (x1 x3)) (wcel (cv x9) (x1 x3)) (wcel (cv x10) (x1 x3))) (wceq (cv x7) (co (co (cv x8) (cv x9) caddc) (cv x10) caddc))) (λ x10 . cprime)) (λ x9 . cprime)) (λ x8 . cprime)) (λ x7 . x1 x3)))∀ x2 x3 x4 x5 . wrex (λ x6 . wa (wbr (cv x6) (co (cdc c1 cc0) (cdc c2 c7) cexp) cle) (wral (λ x7 . wbr (cv x6) (cv x7) cltwcel (cv x7) (x0 x2 x7 x3 x4 x5)) x1)) (λ x6 . cn) (proof)
Theorem ax_hgprmladder : wrex (λ x0 . wrex (λ x1 . wa (w3a (wceq (cfv cc0 (cv x1)) c7) (wceq (cfv c1 (cv x1)) (cdc c1 c3)) (wceq (cfv (cv x0) (cv x1)) (co (cdc c8 c9) (co (cdc c1 cc0) (cdc c2 c9) cexp) cmul))) (wral (λ x2 . w3a (wcel (cfv (cv x2) (cv x1)) (cdif cprime (csn c2))) (wbr (co (cfv (co (cv x2) c1 caddc) (cv x1)) (cfv (cv x2) (cv x1)) cmin) (co (co c4 (co (cdc c1 cc0) (cdc c1 c8) cexp) cmul) c4 cmin) clt) (wbr c4 (co (cfv (co (cv x2) c1 caddc) (cv x1)) (cfv (cv x2) (cv x1)) cmin) clt)) (λ x2 . co cc0 (cv x0) cfzo))) (λ x1 . cfv (cv x0) ciccp)) (λ x0 . cfv c3 cuz) (proof)
Theorem ax_bgbltosilvaOLD : ∀ x0 : ι → ο . w3a (wcel x0 ceven) (wbr c4 x0 clt) (wbr x0 (co c4 (co c10 (cdc c1 c8) cexp) cmul) cle)wcel x0 cgbe (proof)
Theorem ax_hgprmladderOLD : wrex (λ x0 . wrex (λ x1 . wa (w3a (wceq (cfv cc0 (cv x1)) c7) (wceq (cfv c1 (cv x1)) (cdc c1 c3)) (wceq (cfv (cv x0) (cv x1)) (co (cdc c8 c9) (co c10 (cdc c2 c9) cexp) cmul))) (wral (λ x2 . w3a (wcel (cfv (cv x2) (cv x1)) (cdif cprime (csn c2))) (wbr (co (cfv (co (cv x2) c1 caddc) (cv x1)) (cfv (cv x2) (cv x1)) cmin) (co (co c4 (co c10 (cdc c1 c8) cexp) cmul) c4 cmin) clt) (wbr c4 (co (cfv (co (cv x2) c1 caddc) (cv x1)) (cfv (cv x2) (cv x1)) cmin) clt)) (λ x2 . co cc0 (cv x0) cfzo))) (λ x1 . cfv (cv x0) ciccp)) (λ x0 . cfv c3 cuz) (proof)
Theorem ax_tgoldbachgtOLD : wrex (λ x0 . wa (wbr (cv x0) (co c10 (cdc c2 c7) cexp) cle) (wral (λ x1 . wbr (cv x0) (cv x1) cltwcel (cv x1) cgbo) (λ x1 . codd))) (λ x0 . cn) (proof)
Theorem df_upwlks : wceq cupwlks (cmpt (λ x0 . cvv) (λ x0 . copab (λ x1 x2 . w3a (wcel (cv x1) (cword (cdm (cfv (cv x0) ciedg)))) (wf (co cc0 (cfv (cv x1) chash) cfz) (cfv (cv x0) cvtx) (cv x2)) (wral (λ x3 . wceq (cfv (cfv (cv x3) (cv x1)) (cfv (cv x0) ciedg)) (cpr (cfv (cv x3) (cv x2)) (cfv (co (cv x3) c1 caddc) (cv x2)))) (λ x3 . co cc0 (cfv (cv x1) chash) cfzo))))) (proof)
Theorem df_spr : wceq cspr (cmpt (λ x0 . cvv) (λ x0 . cab (λ x1 . wrex (λ x2 . wrex (λ x3 . wceq (cv x1) (cpr (cv x2) (cv x3))) (λ x3 . cv x0)) (λ x2 . cv x0)))) (proof)
Theorem df_mgmhm : wceq cmgmhm (cmpt2 (λ x0 x1 . cmgm) (λ x0 x1 . cmgm) (λ x0 x1 . crab (λ x2 . wral (λ x3 . wral (λ x4 . wceq (cfv (co (cv x3) (cv x4) (cfv (cv x0) cplusg)) (cv x2)) (co (cfv (cv x3) (cv x2)) (cfv (cv x4) (cv x2)) (cfv (cv x1) cplusg))) (λ x4 . cfv (cv x0) cbs)) (λ x3 . cfv (cv x0) cbs)) (λ x2 . co (cfv (cv x1) cbs) (cfv (cv x0) cbs) cmap))) (proof)
Theorem df_submgm : wceq csubmgm (cmpt (λ x0 . cmgm) (λ x0 . crab (λ x1 . wral (λ x2 . wral (λ x3 . wcel (co (cv x2) (cv x3) (cfv (cv x0) cplusg)) (cv x1)) (λ x3 . cv x1)) (λ x2 . cv x1)) (λ x1 . cpw (cfv (cv x0) cbs)))) (proof)
Theorem df_cllaw : wceq ccllaw (copab (λ x0 x1 . wral (λ x2 . wral (λ x3 . wcel (co (cv x2) (cv x3) (cv x0)) (cv x1)) (λ x3 . cv x1)) (λ x2 . cv x1))) (proof)
Theorem df_comlaw : wceq ccomlaw (copab (λ x0 x1 . wral (λ x2 . wral (λ x3 . wceq (co (cv x2) (cv x3) (cv x0)) (co (cv x3) (cv x2) (cv x0))) (λ x3 . cv x1)) (λ x2 . cv x1))) (proof)
Theorem df_asslaw : wceq casslaw (copab (λ x0 x1 . wral (λ x2 . wral (λ x3 . wral (λ x4 . wceq (co (co (cv x2) (cv x3) (cv x0)) (cv x4) (cv x0)) (co (cv x2) (co (cv x3) (cv x4) (cv x0)) (cv x0))) (λ x4 . cv x1)) (λ x3 . cv x1)) (λ x2 . cv x1))) (proof)
Theorem df_intop : wceq cintop (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . co (cv x1) (cxp (cv x0) (cv x0)) cmap)) (proof)
Theorem df_clintop : wceq cclintop (cmpt (λ x0 . cvv) (λ x0 . co (cv x0) (cv x0) cintop)) (proof)
Theorem df_assintop : wceq cassintop (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wbr (cv x1) (cv x0) casslaw) (λ x1 . cfv (cv x0) cclintop))) (proof)