Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrFBS..
/
60af4..
PUbiq..
/
c1cf1..
vout
PrFBS..
/
93a75..
0.10 bars
TMUTn..
/
5a278..
ownership of
abdb7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXab..
/
94dff..
ownership of
6e1b8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYjW..
/
e2828..
ownership of
cb07e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdUT..
/
14b80..
ownership of
36f90..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSsg..
/
9bb62..
ownership of
9dfe2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTS7..
/
cd6cd..
ownership of
61821..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLjr..
/
2aeef..
ownership of
19b69..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbHB..
/
161f6..
ownership of
cc4cd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR9R..
/
6d1e6..
ownership of
10218..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRfh..
/
3f7c1..
ownership of
83102..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHjW..
/
bb8da..
ownership of
2e4df..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTDJ..
/
fea3d..
ownership of
a7aa0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaT2..
/
1d490..
ownership of
6e082..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSpF..
/
23082..
ownership of
ec96b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXbi..
/
614ab..
ownership of
7ebd7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ3L..
/
d9eab..
ownership of
e7f08..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbA8..
/
58845..
ownership of
78de4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUky..
/
8dc40..
ownership of
3fb3d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVrU..
/
b7f18..
ownership of
66e3c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPTh..
/
07b76..
ownership of
b3f51..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXNT..
/
ed528..
ownership of
0e600..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXqt..
/
413df..
ownership of
05c23..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM4G..
/
a6a27..
ownership of
656d3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNcF..
/
8c8d7..
ownership of
63233..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdrb..
/
ce134..
ownership of
949f9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQPL..
/
ff29b..
ownership of
a002d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRBe..
/
8ad1f..
ownership of
19765..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZiD..
/
0fdc1..
ownership of
160d1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKC6..
/
309fe..
ownership of
5fffd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMN3z..
/
e29df..
ownership of
5cec6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYFb..
/
b1ee8..
ownership of
ca960..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMW1B..
/
722ed..
ownership of
06863..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUCb..
/
11e4b..
ownership of
b4de0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMai4..
/
c63ee..
ownership of
f6d9f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbD7..
/
a5b2b..
ownership of
ee902..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa1Z..
/
bfd7c..
ownership of
cc7af..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUJvY..
/
5c8bb..
doc published by
PrCmT..
Known
df_conngr__df_eupth__df_frgr__df_plig__df_grpo__df_gid__df_ginv__df_gdiv__df_ablo__df_vc__df_nv__df_va__df_ba__df_sm__df_0v__df_vs__df_nmcv__df_ims
:
∀ x0 : ο .
(
wceq
cconngr
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wex
(
λ x5 .
wex
(
λ x6 .
wbr
(
cv
x5
)
(
cv
x6
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cpthson
)
)
)
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
(
cfv
(
cv
x1
)
cvtx
)
)
)
⟶
wceq
ceupth
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
ctrls
)
)
(
wfo
(
co
cc0
(
cfv
(
cv
x2
)
chash
)
cfzo
)
(
cdm
(
cfv
(
cv
x1
)
ciedg
)
)
(
cv
x2
)
)
)
)
)
⟶
wceq
cfrgr
(
cab
(
λ x1 .
wa
(
wcel
(
cv
x1
)
cusgr
)
(
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wreu
(
λ x6 .
wss
(
cpr
(
cpr
(
cv
x6
)
(
cv
x4
)
)
(
cpr
(
cv
x6
)
(
cv
x5
)
)
)
(
cv
x3
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cdif
(
cv
x2
)
(
csn
(
cv
x4
)
)
)
)
(
λ x4 .
cv
x2
)
)
(
cfv
(
cv
x1
)
cedg
)
)
(
cfv
(
cv
x1
)
cvtx
)
)
)
)
⟶
wceq
cplig
(
cab
(
λ x1 .
w3a
(
wral
(
λ x2 .
wral
(
λ x3 .
wne
(
cv
x2
)
(
cv
x3
)
⟶
wreu
(
λ x4 .
wa
(
wcel
(
cv
x2
)
(
cv
x4
)
)
(
wcel
(
cv
x3
)
(
cv
x4
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cuni
(
cv
x1
)
)
)
(
λ x2 .
cuni
(
cv
x1
)
)
)
(
wral
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
w3a
(
wne
(
cv
x3
)
(
cv
x4
)
)
(
wcel
(
cv
x3
)
(
cv
x2
)
)
(
wcel
(
cv
x4
)
(
cv
x2
)
)
)
(
λ x4 .
cuni
(
cv
x1
)
)
)
(
λ x3 .
cuni
(
cv
x1
)
)
)
(
λ x2 .
cv
x1
)
)
(
wrex
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wral
(
λ x5 .
wn
(
w3a
(
wcel
(
cv
x2
)
(
cv
x5
)
)
(
wcel
(
cv
x3
)
(
cv
x5
)
)
(
wcel
(
cv
x4
)
(
cv
x5
)
)
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cuni
(
cv
x1
)
)
)
(
λ x3 .
cuni
(
cv
x1
)
)
)
(
λ x2 .
cuni
(
cv
x1
)
)
)
)
)
⟶
wceq
cgr
(
cab
(
λ x1 .
wex
(
λ x2 .
w3a
(
wf
(
cxp
(
cv
x2
)
(
cv
x2
)
)
(
cv
x2
)
(
cv
x1
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
co
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x1
)
)
(
cv
x5
)
(
cv
x1
)
)
(
co
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x1
)
)
(
cv
x1
)
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
(
wrex
(
λ x3 .
wral
(
λ x4 .
wa
(
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x1
)
)
(
cv
x4
)
)
(
wrex
(
λ x5 .
wceq
(
co
(
cv
x5
)
(
cv
x4
)
(
cv
x1
)
)
(
cv
x3
)
)
(
λ x5 .
cv
x2
)
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
)
)
)
⟶
wceq
cgi
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crio
(
λ x2 .
wral
(
λ x3 .
wa
(
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
(
cv
x3
)
)
(
wceq
(
co
(
cv
x3
)
(
cv
x2
)
(
cv
x1
)
)
(
cv
x3
)
)
)
(
λ x3 .
crn
(
cv
x1
)
)
)
(
λ x2 .
crn
(
cv
x1
)
)
)
)
⟶
wceq
cgn
(
cmpt
(
λ x1 .
cgr
)
(
λ x1 .
cmpt
(
λ x2 .
crn
(
cv
x1
)
)
(
λ x2 .
crio
(
λ x3 .
wceq
(
co
(
cv
x3
)
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
cv
x1
)
cgi
)
)
(
λ x3 .
crn
(
cv
x1
)
)
)
)
)
⟶
wceq
cgs
(
cmpt
(
λ x1 .
cgr
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
crn
(
cv
x1
)
)
(
λ x2 x3 .
crn
(
cv
x1
)
)
(
λ x2 x3 .
co
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
cgn
)
)
(
cv
x1
)
)
)
)
⟶
wceq
cablo
(
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
(
co
(
cv
x3
)
(
cv
x2
)
(
cv
x1
)
)
)
(
λ x3 .
crn
(
cv
x1
)
)
)
(
λ x2 .
crn
(
cv
x1
)
)
)
(
λ x1 .
cgr
)
)
⟶
wceq
cvc
(
copab
(
λ x1 x2 .
w3a
(
wcel
(
cv
x1
)
cablo
)
(
wf
(
cxp
cc
(
crn
(
cv
x1
)
)
)
(
crn
(
cv
x1
)
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wa
(
wceq
(
co
c1
(
cv
x3
)
(
cv
x2
)
)
(
cv
x3
)
)
(
wral
(
λ x4 .
wa
(
wral
(
λ x5 .
wceq
(
co
(
cv
x4
)
(
co
(
cv
x3
)
(
cv
x5
)
(
cv
x1
)
)
(
cv
x2
)
)
(
co
(
co
(
cv
x4
)
(
cv
x3
)
(
cv
x2
)
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
(
cv
x1
)
)
)
(
λ x5 .
crn
(
cv
x1
)
)
)
(
wral
(
λ x5 .
wa
(
wceq
(
co
(
co
(
cv
x4
)
(
cv
x5
)
caddc
)
(
cv
x3
)
(
cv
x2
)
)
(
co
(
co
(
cv
x4
)
(
cv
x3
)
(
cv
x2
)
)
(
co
(
cv
x5
)
(
cv
x3
)
(
cv
x2
)
)
(
cv
x1
)
)
)
(
wceq
(
co
(
co
(
cv
x4
)
(
cv
x5
)
cmul
)
(
cv
x3
)
(
cv
x2
)
)
(
co
(
cv
x4
)
(
co
(
cv
x5
)
(
cv
x3
)
(
cv
x2
)
)
(
cv
x2
)
)
)
)
(
λ x5 .
cc
)
)
)
(
λ x4 .
cc
)
)
)
(
λ x3 .
crn
(
cv
x1
)
)
)
)
)
⟶
wceq
cnv
(
coprab
(
λ x1 x2 x3 .
w3a
(
wcel
(
cop
(
cv
x1
)
(
cv
x2
)
)
cvc
)
(
wf
(
crn
(
cv
x1
)
)
cr
(
cv
x3
)
)
(
wral
(
λ x4 .
w3a
(
wceq
(
cfv
(
cv
x4
)
(
cv
x3
)
)
cc0
⟶
wceq
(
cv
x4
)
(
cfv
(
cv
x1
)
cgi
)
)
(
wral
(
λ x5 .
wceq
(
cfv
(
co
(
cv
x5
)
(
cv
x4
)
(
cv
x2
)
)
(
cv
x3
)
)
(
co
(
cfv
(
cv
x5
)
cabs
)
(
cfv
(
cv
x4
)
(
cv
x3
)
)
cmul
)
)
(
λ x5 .
cc
)
)
(
wral
(
λ x5 .
wbr
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x1
)
)
(
cv
x3
)
)
(
co
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
caddc
)
cle
)
(
λ x5 .
crn
(
cv
x1
)
)
)
)
(
λ x4 .
crn
(
cv
x1
)
)
)
)
)
⟶
wceq
cpv
(
ccom
c1st
c1st
)
⟶
wceq
cba
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crn
(
cfv
(
cv
x1
)
cpv
)
)
)
⟶
wceq
cns
(
ccom
c2nd
c1st
)
⟶
wceq
cn0v
(
ccom
cgi
cpv
)
⟶
wceq
cnsb
(
ccom
cgs
cpv
)
⟶
wceq
cnmcv
c2nd
⟶
wceq
cims
(
cmpt
(
λ x1 .
cnv
)
(
λ x1 .
ccom
(
cfv
(
cv
x1
)
cnmcv
)
(
cfv
(
cv
x1
)
cnsb
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_conngr
:
wceq
cconngr
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wex
(
λ x4 .
wex
(
λ x5 .
wbr
(
cv
x4
)
(
cv
x5
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cpthson
)
)
)
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
(
cfv
(
cv
x0
)
cvtx
)
)
)
(proof)
Theorem
df_eupth
:
wceq
ceupth
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wbr
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
ctrls
)
)
(
wfo
(
co
cc0
(
cfv
(
cv
x1
)
chash
)
cfzo
)
(
cdm
(
cfv
(
cv
x0
)
ciedg
)
)
(
cv
x1
)
)
)
)
)
(proof)
Theorem
df_frgr
:
wceq
cfrgr
(
cab
(
λ x0 .
wa
(
wcel
(
cv
x0
)
cusgr
)
(
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wreu
(
λ x5 .
wss
(
cpr
(
cpr
(
cv
x5
)
(
cv
x3
)
)
(
cpr
(
cv
x5
)
(
cv
x4
)
)
)
(
cv
x2
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cdif
(
cv
x1
)
(
csn
(
cv
x3
)
)
)
)
(
λ x3 .
cv
x1
)
)
(
cfv
(
cv
x0
)
cedg
)
)
(
cfv
(
cv
x0
)
cvtx
)
)
)
)
(proof)
Theorem
df_plig
:
wceq
cplig
(
cab
(
λ x0 .
w3a
(
wral
(
λ x1 .
wral
(
λ x2 .
wne
(
cv
x1
)
(
cv
x2
)
⟶
wreu
(
λ x3 .
wa
(
wcel
(
cv
x1
)
(
cv
x3
)
)
(
wcel
(
cv
x2
)
(
cv
x3
)
)
)
(
λ x3 .
cv
x0
)
)
(
λ x2 .
cuni
(
cv
x0
)
)
)
(
λ x1 .
cuni
(
cv
x0
)
)
)
(
wral
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
w3a
(
wne
(
cv
x2
)
(
cv
x3
)
)
(
wcel
(
cv
x2
)
(
cv
x1
)
)
(
wcel
(
cv
x3
)
(
cv
x1
)
)
)
(
λ x3 .
cuni
(
cv
x0
)
)
)
(
λ x2 .
cuni
(
cv
x0
)
)
)
(
λ x1 .
cv
x0
)
)
(
wrex
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wral
(
λ x4 .
wn
(
w3a
(
wcel
(
cv
x1
)
(
cv
x4
)
)
(
wcel
(
cv
x2
)
(
cv
x4
)
)
(
wcel
(
cv
x3
)
(
cv
x4
)
)
)
)
(
λ x4 .
cv
x0
)
)
(
λ x3 .
cuni
(
cv
x0
)
)
)
(
λ x2 .
cuni
(
cv
x0
)
)
)
(
λ x1 .
cuni
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_grpo
:
wceq
cgr
(
cab
(
λ x0 .
wex
(
λ x1 .
w3a
(
wf
(
cxp
(
cv
x1
)
(
cv
x1
)
)
(
cv
x1
)
(
cv
x0
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x0
)
)
(
cv
x4
)
(
cv
x0
)
)
(
co
(
cv
x2
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x0
)
)
(
cv
x0
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
(
wrex
(
λ x2 .
wral
(
λ x3 .
wa
(
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x0
)
)
(
cv
x3
)
)
(
wrex
(
λ x4 .
wceq
(
co
(
cv
x4
)
(
cv
x3
)
(
cv
x0
)
)
(
cv
x2
)
)
(
λ x4 .
cv
x1
)
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
)
)
)
(proof)
Theorem
df_gid
:
wceq
cgi
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crio
(
λ x1 .
wral
(
λ x2 .
wa
(
wceq
(
co
(
cv
x1
)
(
cv
x2
)
(
cv
x0
)
)
(
cv
x2
)
)
(
wceq
(
co
(
cv
x2
)
(
cv
x1
)
(
cv
x0
)
)
(
cv
x2
)
)
)
(
λ x2 .
crn
(
cv
x0
)
)
)
(
λ x1 .
crn
(
cv
x0
)
)
)
)
(proof)
Theorem
df_ginv
:
wceq
cgn
(
cmpt
(
λ x0 .
cgr
)
(
λ x0 .
cmpt
(
λ x1 .
crn
(
cv
x0
)
)
(
λ x1 .
crio
(
λ x2 .
wceq
(
co
(
cv
x2
)
(
cv
x1
)
(
cv
x0
)
)
(
cfv
(
cv
x0
)
cgi
)
)
(
λ x2 .
crn
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_gdiv
:
wceq
cgs
(
cmpt
(
λ x0 .
cgr
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
crn
(
cv
x0
)
)
(
λ x1 x2 .
crn
(
cv
x0
)
)
(
λ x1 x2 .
co
(
cv
x1
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
cgn
)
)
(
cv
x0
)
)
)
)
(proof)
Theorem
df_ablo
:
wceq
cablo
(
crab
(
λ x0 .
wral
(
λ x1 .
wral
(
λ x2 .
wceq
(
co
(
cv
x1
)
(
cv
x2
)
(
cv
x0
)
)
(
co
(
cv
x2
)
(
cv
x1
)
(
cv
x0
)
)
)
(
λ x2 .
crn
(
cv
x0
)
)
)
(
λ x1 .
crn
(
cv
x0
)
)
)
(
λ x0 .
cgr
)
)
(proof)
Theorem
df_vc
:
wceq
cvc
(
copab
(
λ x0 x1 .
w3a
(
wcel
(
cv
x0
)
cablo
)
(
wf
(
cxp
cc
(
crn
(
cv
x0
)
)
)
(
crn
(
cv
x0
)
)
(
cv
x1
)
)
(
wral
(
λ x2 .
wa
(
wceq
(
co
c1
(
cv
x2
)
(
cv
x1
)
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wa
(
wral
(
λ x4 .
wceq
(
co
(
cv
x3
)
(
co
(
cv
x2
)
(
cv
x4
)
(
cv
x0
)
)
(
cv
x1
)
)
(
co
(
co
(
cv
x3
)
(
cv
x2
)
(
cv
x1
)
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x1
)
)
(
cv
x0
)
)
)
(
λ x4 .
crn
(
cv
x0
)
)
)
(
wral
(
λ x4 .
wa
(
wceq
(
co
(
co
(
cv
x3
)
(
cv
x4
)
caddc
)
(
cv
x2
)
(
cv
x1
)
)
(
co
(
co
(
cv
x3
)
(
cv
x2
)
(
cv
x1
)
)
(
co
(
cv
x4
)
(
cv
x2
)
(
cv
x1
)
)
(
cv
x0
)
)
)
(
wceq
(
co
(
co
(
cv
x3
)
(
cv
x4
)
cmul
)
(
cv
x2
)
(
cv
x1
)
)
(
co
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x2
)
(
cv
x1
)
)
(
cv
x1
)
)
)
)
(
λ x4 .
cc
)
)
)
(
λ x3 .
cc
)
)
)
(
λ x2 .
crn
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_nv
:
wceq
cnv
(
coprab
(
λ x0 x1 x2 .
w3a
(
wcel
(
cop
(
cv
x0
)
(
cv
x1
)
)
cvc
)
(
wf
(
crn
(
cv
x0
)
)
cr
(
cv
x2
)
)
(
wral
(
λ x3 .
w3a
(
wceq
(
cfv
(
cv
x3
)
(
cv
x2
)
)
cc0
⟶
wceq
(
cv
x3
)
(
cfv
(
cv
x0
)
cgi
)
)
(
wral
(
λ x4 .
wceq
(
cfv
(
co
(
cv
x4
)
(
cv
x3
)
(
cv
x1
)
)
(
cv
x2
)
)
(
co
(
cfv
(
cv
x4
)
cabs
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
cmul
)
)
(
λ x4 .
cc
)
)
(
wral
(
λ x4 .
wbr
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x0
)
)
(
cv
x2
)
)
(
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
caddc
)
cle
)
(
λ x4 .
crn
(
cv
x0
)
)
)
)
(
λ x3 .
crn
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_va
:
wceq
cpv
(
ccom
c1st
c1st
)
(proof)
Theorem
df_ba
:
wceq
cba
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crn
(
cfv
(
cv
x0
)
cpv
)
)
)
(proof)
Theorem
df_sm
:
wceq
cns
(
ccom
c2nd
c1st
)
(proof)
Theorem
df_0v
:
wceq
cn0v
(
ccom
cgi
cpv
)
(proof)
Theorem
df_vs
:
wceq
cnsb
(
ccom
cgs
cpv
)
(proof)
Theorem
df_nmcv
:
wceq
cnmcv
c2nd
(proof)
Theorem
df_ims
:
wceq
cims
(
cmpt
(
λ x0 .
cnv
)
(
λ x0 .
ccom
(
cfv
(
cv
x0
)
cnmcv
)
(
cfv
(
cv
x0
)
cnsb
)
)
)
(proof)