Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrLTu..
/
7ca60..
PUbTg..
/
11f0c..
vout
PrLTu..
/
8828a..
0.10 bars
TMFTb..
/
2e152..
ownership of
f6915..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQRZ..
/
4ed14..
ownership of
c5f4a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSEN..
/
0bfdd..
ownership of
93e56..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQUB..
/
cb902..
ownership of
3174c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTh5..
/
e39fa..
ownership of
e3fe0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGNv..
/
006b3..
ownership of
50d30..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUZi..
/
ad85b..
ownership of
49c39..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcWa..
/
c542c..
ownership of
22d98..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLVv..
/
1ffb5..
ownership of
ec609..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMM4c..
/
068fd..
ownership of
adbfc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaxg..
/
6d30c..
ownership of
f67c5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTt7..
/
68484..
ownership of
2d659..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWrd..
/
f2ed7..
ownership of
c9fc9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLJN..
/
ce088..
ownership of
93d93..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKvT..
/
1f940..
ownership of
901d0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaMC..
/
b6c18..
ownership of
d42a9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQak..
/
d402d..
ownership of
16605..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZY1..
/
8ccb2..
ownership of
54a02..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGgL..
/
383df..
ownership of
a1748..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZsx..
/
4e25a..
ownership of
aa0fa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSCi..
/
8143d..
ownership of
48752..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK9Z..
/
400fa..
ownership of
ce19e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXEz..
/
979c2..
ownership of
78feb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHVc..
/
a5475..
ownership of
bbb62..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNTT..
/
0b031..
ownership of
c2518..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVoX..
/
2e3b4..
ownership of
fd209..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMauN..
/
d9405..
ownership of
b41e3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRah..
/
08d4a..
ownership of
d76cd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFKN..
/
bdcd9..
ownership of
b158b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLLe..
/
a7750..
ownership of
45e10..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQ5R..
/
8b196..
ownership of
89b91..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMQa..
/
710c5..
ownership of
cc0ce..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHa8..
/
23331..
ownership of
f01b2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFTm..
/
3f1f8..
ownership of
bae75..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLfB..
/
3e493..
ownership of
73d13..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFds..
/
74d07..
ownership of
e4860..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUMn8..
/
589e0..
doc published by
PrCmT..
Known
df_tayl__df_ana__df_ulm__df_log__df_cxp__df_logb__df_asin__df_acos__df_atan__df_area__df_em__df_zeta__df_lgam__df_gam__df_igam__df_cht__df_vma__df_chp
:
∀ x0 : ο .
(
wceq
ctayl
(
cmpt2
(
λ x1 x2 .
cpr
cr
cc
)
(
λ x1 x2 .
co
cc
(
cv
x1
)
cpm
)
(
λ x1 x2 .
cmpt2
(
λ x3 x4 .
cun
cn0
(
csn
cpnf
)
)
(
λ x3 x4 .
ciin
(
λ x5 .
cin
(
co
cc0
(
cv
x3
)
cicc
)
cz
)
(
λ x5 .
cdm
(
cfv
(
cv
x5
)
(
co
(
cv
x1
)
(
cv
x2
)
cdvn
)
)
)
)
(
λ x3 x4 .
ciun
(
λ x5 .
cc
)
(
λ x5 .
cxp
(
csn
(
cv
x5
)
)
(
co
ccnfld
(
cmpt
(
λ x6 .
cin
(
co
cc0
(
cv
x3
)
cicc
)
cz
)
(
λ x6 .
co
(
co
(
cfv
(
cv
x4
)
(
cfv
(
cv
x6
)
(
co
(
cv
x1
)
(
cv
x2
)
cdvn
)
)
)
(
cfv
(
cv
x6
)
cfa
)
cdiv
)
(
co
(
co
(
cv
x5
)
(
cv
x4
)
cmin
)
(
cv
x6
)
cexp
)
cmul
)
)
ctsu
)
)
)
)
)
⟶
wceq
cana
(
cmpt
(
λ x1 .
cpr
cr
cc
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wcel
(
cv
x3
)
(
cfv
(
cdm
(
cin
(
cv
x2
)
(
co
cpnf
(
cv
x3
)
(
co
(
cv
x1
)
(
cv
x2
)
ctayl
)
)
)
)
(
cfv
(
co
(
cfv
ccnfld
ctopn
)
(
cv
x1
)
crest
)
cnt
)
)
)
(
λ x3 .
cdm
(
cv
x2
)
)
)
(
λ x2 .
co
cc
(
cv
x1
)
cpm
)
)
)
⟶
wceq
culm
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
wrex
(
λ x4 .
w3a
(
wf
(
cfv
(
cv
x4
)
cuz
)
(
co
cc
(
cv
x1
)
cmap
)
(
cv
x2
)
)
(
wf
(
cv
x1
)
cc
(
cv
x3
)
)
(
wral
(
λ x5 .
wrex
(
λ x6 .
wral
(
λ x7 .
wral
(
λ x8 .
wbr
(
cfv
(
co
(
cfv
(
cv
x8
)
(
cfv
(
cv
x7
)
(
cv
x2
)
)
)
(
cfv
(
cv
x8
)
(
cv
x3
)
)
cmin
)
cabs
)
(
cv
x5
)
clt
)
(
λ x8 .
cv
x1
)
)
(
λ x7 .
cfv
(
cv
x6
)
cuz
)
)
(
λ x6 .
cfv
(
cv
x4
)
cuz
)
)
(
λ x5 .
crp
)
)
)
(
λ x4 .
cz
)
)
)
)
⟶
wceq
clog
(
ccnv
(
cres
ce
(
cima
(
ccnv
cim
)
(
co
(
cneg
cpi
)
cpi
cioc
)
)
)
)
⟶
wceq
ccxp
(
cmpt2
(
λ x1 x2 .
cc
)
(
λ x1 x2 .
cc
)
(
λ x1 x2 .
cif
(
wceq
(
cv
x1
)
cc0
)
(
cif
(
wceq
(
cv
x2
)
cc0
)
c1
cc0
)
(
cfv
(
co
(
cv
x2
)
(
cfv
(
cv
x1
)
clog
)
cmul
)
ce
)
)
)
⟶
wceq
clogb
(
cmpt2
(
λ x1 x2 .
cdif
cc
(
cpr
cc0
c1
)
)
(
λ x1 x2 .
cdif
cc
(
csn
cc0
)
)
(
λ x1 x2 .
co
(
cfv
(
cv
x2
)
clog
)
(
cfv
(
cv
x1
)
clog
)
cdiv
)
)
⟶
wceq
casin
(
cmpt
(
λ x1 .
cc
)
(
λ x1 .
co
(
cneg
ci
)
(
cfv
(
co
(
co
ci
(
cv
x1
)
cmul
)
(
cfv
(
co
c1
(
co
(
cv
x1
)
c2
cexp
)
cmin
)
csqrt
)
caddc
)
clog
)
cmul
)
)
⟶
wceq
cacos
(
cmpt
(
λ x1 .
cc
)
(
λ x1 .
co
(
co
cpi
c2
cdiv
)
(
cfv
(
cv
x1
)
casin
)
cmin
)
)
⟶
wceq
catan
(
cmpt
(
λ x1 .
cdif
cc
(
cpr
(
cneg
ci
)
ci
)
)
(
λ x1 .
co
(
co
ci
c2
cdiv
)
(
co
(
cfv
(
co
c1
(
co
ci
(
cv
x1
)
cmul
)
cmin
)
clog
)
(
cfv
(
co
c1
(
co
ci
(
cv
x1
)
cmul
)
caddc
)
clog
)
cmin
)
cmul
)
)
⟶
wceq
carea
(
cmpt
(
λ x1 .
crab
(
λ x2 .
wa
(
wral
(
λ x3 .
wcel
(
cima
(
cv
x2
)
(
csn
(
cv
x3
)
)
)
(
cima
(
ccnv
cvol
)
cr
)
)
(
λ x3 .
cr
)
)
(
wcel
(
cmpt
(
λ x3 .
cr
)
(
λ x3 .
cfv
(
cima
(
cv
x2
)
(
csn
(
cv
x3
)
)
)
cvol
)
)
cibl
)
)
(
λ x2 .
cpw
(
cxp
cr
cr
)
)
)
(
λ x1 .
citg
(
λ x2 .
cr
)
(
λ x2 .
cfv
(
cima
(
cv
x1
)
(
csn
(
cv
x2
)
)
)
cvol
)
)
)
⟶
wceq
cem
(
csu
cn
(
λ x1 .
co
(
co
c1
(
cv
x1
)
cdiv
)
(
cfv
(
co
c1
(
co
c1
(
cv
x1
)
cdiv
)
caddc
)
clog
)
cmin
)
)
⟶
wceq
czeta
(
crio
(
λ x1 .
wral
(
λ x2 .
wceq
(
co
(
co
c1
(
co
c2
(
co
c1
(
cv
x2
)
cmin
)
ccxp
)
cmin
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cmul
)
(
csu
cn0
(
λ x3 .
co
(
csu
(
co
cc0
(
cv
x3
)
cfz
)
(
λ x4 .
co
(
co
(
co
(
cneg
c1
)
(
cv
x4
)
cexp
)
(
co
(
cv
x3
)
(
cv
x4
)
cbc
)
cmul
)
(
co
(
co
(
cv
x4
)
c1
caddc
)
(
cv
x2
)
ccxp
)
cmul
)
)
(
co
c2
(
co
(
cv
x3
)
c1
caddc
)
cexp
)
cdiv
)
)
)
(
λ x2 .
cdif
cc
(
csn
c1
)
)
)
(
λ x1 .
co
(
cdif
cc
(
csn
c1
)
)
cc
ccncf
)
)
⟶
wceq
clgam
(
cmpt
(
λ x1 .
cdif
cc
(
cdif
cz
cn
)
)
(
λ x1 .
co
(
csu
cn
(
λ x2 .
co
(
co
(
cv
x1
)
(
cfv
(
co
(
co
(
cv
x2
)
c1
caddc
)
(
cv
x2
)
cdiv
)
clog
)
cmul
)
(
cfv
(
co
(
co
(
cv
x1
)
(
cv
x2
)
cdiv
)
c1
caddc
)
clog
)
cmin
)
)
(
cfv
(
cv
x1
)
clog
)
cmin
)
)
⟶
wceq
cgam
(
ccom
ce
clgam
)
⟶
wceq
cigam
(
cmpt
(
λ x1 .
cc
)
(
λ x1 .
cif
(
wcel
(
cv
x1
)
(
cdif
cz
cn
)
)
cc0
(
co
c1
(
cfv
(
cv
x1
)
cgam
)
cdiv
)
)
)
⟶
wceq
ccht
(
cmpt
(
λ x1 .
cr
)
(
λ x1 .
csu
(
cin
(
co
cc0
(
cv
x1
)
cicc
)
cprime
)
(
λ x2 .
cfv
(
cv
x2
)
clog
)
)
)
⟶
wceq
cvma
(
cmpt
(
λ x1 .
cn
)
(
λ x1 .
csb
(
crab
(
λ x2 .
wbr
(
cv
x2
)
(
cv
x1
)
cdvds
)
(
λ x2 .
cprime
)
)
(
λ x2 .
cif
(
wceq
(
cfv
(
cv
x2
)
chash
)
c1
)
(
cfv
(
cuni
(
cv
x2
)
)
clog
)
cc0
)
)
)
⟶
wceq
cchp
(
cmpt
(
λ x1 .
cr
)
(
λ x1 .
csu
(
co
c1
(
cfv
(
cv
x1
)
cfl
)
cfz
)
(
λ x2 .
cfv
(
cv
x2
)
cvma
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_tayl
:
wceq
ctayl
(
cmpt2
(
λ x0 x1 .
cpr
cr
cc
)
(
λ x0 x1 .
co
cc
(
cv
x0
)
cpm
)
(
λ x0 x1 .
cmpt2
(
λ x2 x3 .
cun
cn0
(
csn
cpnf
)
)
(
λ x2 x3 .
ciin
(
λ x4 .
cin
(
co
cc0
(
cv
x2
)
cicc
)
cz
)
(
λ x4 .
cdm
(
cfv
(
cv
x4
)
(
co
(
cv
x0
)
(
cv
x1
)
cdvn
)
)
)
)
(
λ x2 x3 .
ciun
(
λ x4 .
cc
)
(
λ x4 .
cxp
(
csn
(
cv
x4
)
)
(
co
ccnfld
(
cmpt
(
λ x5 .
cin
(
co
cc0
(
cv
x2
)
cicc
)
cz
)
(
λ x5 .
co
(
co
(
cfv
(
cv
x3
)
(
cfv
(
cv
x5
)
(
co
(
cv
x0
)
(
cv
x1
)
cdvn
)
)
)
(
cfv
(
cv
x5
)
cfa
)
cdiv
)
(
co
(
co
(
cv
x4
)
(
cv
x3
)
cmin
)
(
cv
x5
)
cexp
)
cmul
)
)
ctsu
)
)
)
)
)
(proof)
Theorem
df_ana
:
wceq
cana
(
cmpt
(
λ x0 .
cpr
cr
cc
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wcel
(
cv
x2
)
(
cfv
(
cdm
(
cin
(
cv
x1
)
(
co
cpnf
(
cv
x2
)
(
co
(
cv
x0
)
(
cv
x1
)
ctayl
)
)
)
)
(
cfv
(
co
(
cfv
ccnfld
ctopn
)
(
cv
x0
)
crest
)
cnt
)
)
)
(
λ x2 .
cdm
(
cv
x1
)
)
)
(
λ x1 .
co
cc
(
cv
x0
)
cpm
)
)
)
(proof)
Theorem
df_ulm
:
wceq
culm
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
wrex
(
λ x3 .
w3a
(
wf
(
cfv
(
cv
x3
)
cuz
)
(
co
cc
(
cv
x0
)
cmap
)
(
cv
x1
)
)
(
wf
(
cv
x0
)
cc
(
cv
x2
)
)
(
wral
(
λ x4 .
wrex
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wbr
(
cfv
(
co
(
cfv
(
cv
x7
)
(
cfv
(
cv
x6
)
(
cv
x1
)
)
)
(
cfv
(
cv
x7
)
(
cv
x2
)
)
cmin
)
cabs
)
(
cv
x4
)
clt
)
(
λ x7 .
cv
x0
)
)
(
λ x6 .
cfv
(
cv
x5
)
cuz
)
)
(
λ x5 .
cfv
(
cv
x3
)
cuz
)
)
(
λ x4 .
crp
)
)
)
(
λ x3 .
cz
)
)
)
)
(proof)
Theorem
df_log
:
wceq
clog
(
ccnv
(
cres
ce
(
cima
(
ccnv
cim
)
(
co
(
cneg
cpi
)
cpi
cioc
)
)
)
)
(proof)
Theorem
df_cxp
:
wceq
ccxp
(
cmpt2
(
λ x0 x1 .
cc
)
(
λ x0 x1 .
cc
)
(
λ x0 x1 .
cif
(
wceq
(
cv
x0
)
cc0
)
(
cif
(
wceq
(
cv
x1
)
cc0
)
c1
cc0
)
(
cfv
(
co
(
cv
x1
)
(
cfv
(
cv
x0
)
clog
)
cmul
)
ce
)
)
)
(proof)
Theorem
df_logb
:
wceq
clogb
(
cmpt2
(
λ x0 x1 .
cdif
cc
(
cpr
cc0
c1
)
)
(
λ x0 x1 .
cdif
cc
(
csn
cc0
)
)
(
λ x0 x1 .
co
(
cfv
(
cv
x1
)
clog
)
(
cfv
(
cv
x0
)
clog
)
cdiv
)
)
(proof)
Theorem
df_asin
:
wceq
casin
(
cmpt
(
λ x0 .
cc
)
(
λ x0 .
co
(
cneg
ci
)
(
cfv
(
co
(
co
ci
(
cv
x0
)
cmul
)
(
cfv
(
co
c1
(
co
(
cv
x0
)
c2
cexp
)
cmin
)
csqrt
)
caddc
)
clog
)
cmul
)
)
(proof)
Theorem
df_acos
:
wceq
cacos
(
cmpt
(
λ x0 .
cc
)
(
λ x0 .
co
(
co
cpi
c2
cdiv
)
(
cfv
(
cv
x0
)
casin
)
cmin
)
)
(proof)
Theorem
df_atan
:
wceq
catan
(
cmpt
(
λ x0 .
cdif
cc
(
cpr
(
cneg
ci
)
ci
)
)
(
λ x0 .
co
(
co
ci
c2
cdiv
)
(
co
(
cfv
(
co
c1
(
co
ci
(
cv
x0
)
cmul
)
cmin
)
clog
)
(
cfv
(
co
c1
(
co
ci
(
cv
x0
)
cmul
)
caddc
)
clog
)
cmin
)
cmul
)
)
(proof)
Theorem
df_area
:
wceq
carea
(
cmpt
(
λ x0 .
crab
(
λ x1 .
wa
(
wral
(
λ x2 .
wcel
(
cima
(
cv
x1
)
(
csn
(
cv
x2
)
)
)
(
cima
(
ccnv
cvol
)
cr
)
)
(
λ x2 .
cr
)
)
(
wcel
(
cmpt
(
λ x2 .
cr
)
(
λ x2 .
cfv
(
cima
(
cv
x1
)
(
csn
(
cv
x2
)
)
)
cvol
)
)
cibl
)
)
(
λ x1 .
cpw
(
cxp
cr
cr
)
)
)
(
λ x0 .
citg
(
λ x1 .
cr
)
(
λ x1 .
cfv
(
cima
(
cv
x0
)
(
csn
(
cv
x1
)
)
)
cvol
)
)
)
(proof)
Theorem
df_em
:
wceq
cem
(
csu
cn
(
λ x0 .
co
(
co
c1
(
cv
x0
)
cdiv
)
(
cfv
(
co
c1
(
co
c1
(
cv
x0
)
cdiv
)
caddc
)
clog
)
cmin
)
)
(proof)
Theorem
df_zeta
:
wceq
czeta
(
crio
(
λ x0 .
wral
(
λ x1 .
wceq
(
co
(
co
c1
(
co
c2
(
co
c1
(
cv
x1
)
cmin
)
ccxp
)
cmin
)
(
cfv
(
cv
x1
)
(
cv
x0
)
)
cmul
)
(
csu
cn0
(
λ x2 .
co
(
csu
(
co
cc0
(
cv
x2
)
cfz
)
(
λ x3 .
co
(
co
(
co
(
cneg
c1
)
(
cv
x3
)
cexp
)
(
co
(
cv
x2
)
(
cv
x3
)
cbc
)
cmul
)
(
co
(
co
(
cv
x3
)
c1
caddc
)
(
cv
x1
)
ccxp
)
cmul
)
)
(
co
c2
(
co
(
cv
x2
)
c1
caddc
)
cexp
)
cdiv
)
)
)
(
λ x1 .
cdif
cc
(
csn
c1
)
)
)
(
λ x0 .
co
(
cdif
cc
(
csn
c1
)
)
cc
ccncf
)
)
(proof)
Theorem
df_lgam
:
wceq
clgam
(
cmpt
(
λ x0 .
cdif
cc
(
cdif
cz
cn
)
)
(
λ x0 .
co
(
csu
cn
(
λ x1 .
co
(
co
(
cv
x0
)
(
cfv
(
co
(
co
(
cv
x1
)
c1
caddc
)
(
cv
x1
)
cdiv
)
clog
)
cmul
)
(
cfv
(
co
(
co
(
cv
x0
)
(
cv
x1
)
cdiv
)
c1
caddc
)
clog
)
cmin
)
)
(
cfv
(
cv
x0
)
clog
)
cmin
)
)
(proof)
Theorem
df_gam
:
wceq
cgam
(
ccom
ce
clgam
)
(proof)
Theorem
df_igam
:
wceq
cigam
(
cmpt
(
λ x0 .
cc
)
(
λ x0 .
cif
(
wcel
(
cv
x0
)
(
cdif
cz
cn
)
)
cc0
(
co
c1
(
cfv
(
cv
x0
)
cgam
)
cdiv
)
)
)
(proof)
Theorem
df_cht
:
wceq
ccht
(
cmpt
(
λ x0 .
cr
)
(
λ x0 .
csu
(
cin
(
co
cc0
(
cv
x0
)
cicc
)
cprime
)
(
λ x1 .
cfv
(
cv
x1
)
clog
)
)
)
(proof)
Theorem
df_vma
:
wceq
cvma
(
cmpt
(
λ x0 .
cn
)
(
λ x0 .
csb
(
crab
(
λ x1 .
wbr
(
cv
x1
)
(
cv
x0
)
cdvds
)
(
λ x1 .
cprime
)
)
(
λ x1 .
cif
(
wceq
(
cfv
(
cv
x1
)
chash
)
c1
)
(
cfv
(
cuni
(
cv
x1
)
)
clog
)
cc0
)
)
)
(proof)
Theorem
df_chp
:
wceq
cchp
(
cmpt
(
λ x0 .
cr
)
(
λ x0 .
csu
(
co
c1
(
cfv
(
cv
x0
)
cfl
)
cfz
)
(
λ x1 .
cfv
(
cv
x1
)
cvma
)
)
)
(proof)