Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrLTu../7ca60..
PUbTg../11f0c..
vout
PrLTu../8828a.. 0.10 bars
TMFTb../2e152.. ownership of f6915.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMQRZ../4ed14.. ownership of c5f4a.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMSEN../0bfdd.. ownership of 93e56.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMQUB../cb902.. ownership of 3174c.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMTh5../e39fa.. ownership of e3fe0.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMGNv../006b3.. ownership of 50d30.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMUZi../ad85b.. ownership of 49c39.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMcWa../c542c.. ownership of 22d98.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMLVv../1ffb5.. ownership of ec609.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMM4c../068fd.. ownership of adbfc.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMaxg../6d30c.. ownership of f67c5.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMTt7../68484.. ownership of 2d659.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMWrd../f2ed7.. ownership of c9fc9.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMLJN../ce088.. ownership of 93d93.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMKvT../1f940.. ownership of 901d0.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMaMC../b6c18.. ownership of d42a9.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMQak../d402d.. ownership of 16605.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMZY1../8ccb2.. ownership of 54a02.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMGgL../383df.. ownership of a1748.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMZsx../4e25a.. ownership of aa0fa.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMSCi../8143d.. ownership of 48752.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMK9Z../400fa.. ownership of ce19e.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMXEz../979c2.. ownership of 78feb.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMHVc../a5475.. ownership of bbb62.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMNTT../0b031.. ownership of c2518.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMVoX../2e3b4.. ownership of fd209.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMauN../d9405.. ownership of b41e3.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMRah../08d4a.. ownership of d76cd.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMFKN../bdcd9.. ownership of b158b.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMLLe../a7750.. ownership of 45e10.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMQ5R../8b196.. ownership of 89b91.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMMQa../710c5.. ownership of cc0ce.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMHa8../23331.. ownership of f01b2.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMFTm../3f1f8.. ownership of bae75.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMLfB../3e493.. ownership of 73d13.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMFds../74d07.. ownership of e4860.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
PUMn8../589e0.. doc published by PrCmT..
Known df_tayl__df_ana__df_ulm__df_log__df_cxp__df_logb__df_asin__df_acos__df_atan__df_area__df_em__df_zeta__df_lgam__df_gam__df_igam__df_cht__df_vma__df_chp : ∀ x0 : ο . (wceq ctayl (cmpt2 (λ x1 x2 . cpr cr cc) (λ x1 x2 . co cc (cv x1) cpm) (λ x1 x2 . cmpt2 (λ x3 x4 . cun cn0 (csn cpnf)) (λ x3 x4 . ciin (λ x5 . cin (co cc0 (cv x3) cicc) cz) (λ x5 . cdm (cfv (cv x5) (co (cv x1) (cv x2) cdvn)))) (λ x3 x4 . ciun (λ x5 . cc) (λ x5 . cxp (csn (cv x5)) (co ccnfld (cmpt (λ x6 . cin (co cc0 (cv x3) cicc) cz) (λ x6 . co (co (cfv (cv x4) (cfv (cv x6) (co (cv x1) (cv x2) cdvn))) (cfv (cv x6) cfa) cdiv) (co (co (cv x5) (cv x4) cmin) (cv x6) cexp) cmul)) ctsu)))))wceq cana (cmpt (λ x1 . cpr cr cc) (λ x1 . crab (λ x2 . wral (λ x3 . wcel (cv x3) (cfv (cdm (cin (cv x2) (co cpnf (cv x3) (co (cv x1) (cv x2) ctayl)))) (cfv (co (cfv ccnfld ctopn) (cv x1) crest) cnt))) (λ x3 . cdm (cv x2))) (λ x2 . co cc (cv x1) cpm)))wceq culm (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . wrex (λ x4 . w3a (wf (cfv (cv x4) cuz) (co cc (cv x1) cmap) (cv x2)) (wf (cv x1) cc (cv x3)) (wral (λ x5 . wrex (λ x6 . wral (λ x7 . wral (λ x8 . wbr (cfv (co (cfv (cv x8) (cfv (cv x7) (cv x2))) (cfv (cv x8) (cv x3)) cmin) cabs) (cv x5) clt) (λ x8 . cv x1)) (λ x7 . cfv (cv x6) cuz)) (λ x6 . cfv (cv x4) cuz)) (λ x5 . crp))) (λ x4 . cz))))wceq clog (ccnv (cres ce (cima (ccnv cim) (co (cneg cpi) cpi cioc))))wceq ccxp (cmpt2 (λ x1 x2 . cc) (λ x1 x2 . cc) (λ x1 x2 . cif (wceq (cv x1) cc0) (cif (wceq (cv x2) cc0) c1 cc0) (cfv (co (cv x2) (cfv (cv x1) clog) cmul) ce)))wceq clogb (cmpt2 (λ x1 x2 . cdif cc (cpr cc0 c1)) (λ x1 x2 . cdif cc (csn cc0)) (λ x1 x2 . co (cfv (cv x2) clog) (cfv (cv x1) clog) cdiv))wceq casin (cmpt (λ x1 . cc) (λ x1 . co (cneg ci) (cfv (co (co ci (cv x1) cmul) (cfv (co c1 (co (cv x1) c2 cexp) cmin) csqrt) caddc) clog) cmul))wceq cacos (cmpt (λ x1 . cc) (λ x1 . co (co cpi c2 cdiv) (cfv (cv x1) casin) cmin))wceq catan (cmpt (λ x1 . cdif cc (cpr (cneg ci) ci)) (λ x1 . co (co ci c2 cdiv) (co (cfv (co c1 (co ci (cv x1) cmul) cmin) clog) (cfv (co c1 (co ci (cv x1) cmul) caddc) clog) cmin) cmul))wceq carea (cmpt (λ x1 . crab (λ x2 . wa (wral (λ x3 . wcel (cima (cv x2) (csn (cv x3))) (cima (ccnv cvol) cr)) (λ x3 . cr)) (wcel (cmpt (λ x3 . cr) (λ x3 . cfv (cima (cv x2) (csn (cv x3))) cvol)) cibl)) (λ x2 . cpw (cxp cr cr))) (λ x1 . citg (λ x2 . cr) (λ x2 . cfv (cima (cv x1) (csn (cv x2))) cvol)))wceq cem (csu cn (λ x1 . co (co c1 (cv x1) cdiv) (cfv (co c1 (co c1 (cv x1) cdiv) caddc) clog) cmin))wceq czeta (crio (λ x1 . wral (λ x2 . wceq (co (co c1 (co c2 (co c1 (cv x2) cmin) ccxp) cmin) (cfv (cv x2) (cv x1)) cmul) (csu cn0 (λ x3 . co (csu (co cc0 (cv x3) cfz) (λ x4 . co (co (co (cneg c1) (cv x4) cexp) (co (cv x3) (cv x4) cbc) cmul) (co (co (cv x4) c1 caddc) (cv x2) ccxp) cmul)) (co c2 (co (cv x3) c1 caddc) cexp) cdiv))) (λ x2 . cdif cc (csn c1))) (λ x1 . co (cdif cc (csn c1)) cc ccncf))wceq clgam (cmpt (λ x1 . cdif cc (cdif cz cn)) (λ x1 . co (csu cn (λ x2 . co (co (cv x1) (cfv (co (co (cv x2) c1 caddc) (cv x2) cdiv) clog) cmul) (cfv (co (co (cv x1) (cv x2) cdiv) c1 caddc) clog) cmin)) (cfv (cv x1) clog) cmin))wceq cgam (ccom ce clgam)wceq cigam (cmpt (λ x1 . cc) (λ x1 . cif (wcel (cv x1) (cdif cz cn)) cc0 (co c1 (cfv (cv x1) cgam) cdiv)))wceq ccht (cmpt (λ x1 . cr) (λ x1 . csu (cin (co cc0 (cv x1) cicc) cprime) (λ x2 . cfv (cv x2) clog)))wceq cvma (cmpt (λ x1 . cn) (λ x1 . csb (crab (λ x2 . wbr (cv x2) (cv x1) cdvds) (λ x2 . cprime)) (λ x2 . cif (wceq (cfv (cv x2) chash) c1) (cfv (cuni (cv x2)) clog) cc0)))wceq cchp (cmpt (λ x1 . cr) (λ x1 . csu (co c1 (cfv (cv x1) cfl) cfz) (λ x2 . cfv (cv x2) cvma)))x0)x0
Theorem df_tayl : wceq ctayl (cmpt2 (λ x0 x1 . cpr cr cc) (λ x0 x1 . co cc (cv x0) cpm) (λ x0 x1 . cmpt2 (λ x2 x3 . cun cn0 (csn cpnf)) (λ x2 x3 . ciin (λ x4 . cin (co cc0 (cv x2) cicc) cz) (λ x4 . cdm (cfv (cv x4) (co (cv x0) (cv x1) cdvn)))) (λ x2 x3 . ciun (λ x4 . cc) (λ x4 . cxp (csn (cv x4)) (co ccnfld (cmpt (λ x5 . cin (co cc0 (cv x2) cicc) cz) (λ x5 . co (co (cfv (cv x3) (cfv (cv x5) (co (cv x0) (cv x1) cdvn))) (cfv (cv x5) cfa) cdiv) (co (co (cv x4) (cv x3) cmin) (cv x5) cexp) cmul)) ctsu))))) (proof)
Theorem df_ana : wceq cana (cmpt (λ x0 . cpr cr cc) (λ x0 . crab (λ x1 . wral (λ x2 . wcel (cv x2) (cfv (cdm (cin (cv x1) (co cpnf (cv x2) (co (cv x0) (cv x1) ctayl)))) (cfv (co (cfv ccnfld ctopn) (cv x0) crest) cnt))) (λ x2 . cdm (cv x1))) (λ x1 . co cc (cv x0) cpm))) (proof)
Theorem df_ulm : wceq culm (cmpt (λ x0 . cvv) (λ x0 . copab (λ x1 x2 . wrex (λ x3 . w3a (wf (cfv (cv x3) cuz) (co cc (cv x0) cmap) (cv x1)) (wf (cv x0) cc (cv x2)) (wral (λ x4 . wrex (λ x5 . wral (λ x6 . wral (λ x7 . wbr (cfv (co (cfv (cv x7) (cfv (cv x6) (cv x1))) (cfv (cv x7) (cv x2)) cmin) cabs) (cv x4) clt) (λ x7 . cv x0)) (λ x6 . cfv (cv x5) cuz)) (λ x5 . cfv (cv x3) cuz)) (λ x4 . crp))) (λ x3 . cz)))) (proof)
Theorem df_log : wceq clog (ccnv (cres ce (cima (ccnv cim) (co (cneg cpi) cpi cioc)))) (proof)
Theorem df_cxp : wceq ccxp (cmpt2 (λ x0 x1 . cc) (λ x0 x1 . cc) (λ x0 x1 . cif (wceq (cv x0) cc0) (cif (wceq (cv x1) cc0) c1 cc0) (cfv (co (cv x1) (cfv (cv x0) clog) cmul) ce))) (proof)
Theorem df_logb : wceq clogb (cmpt2 (λ x0 x1 . cdif cc (cpr cc0 c1)) (λ x0 x1 . cdif cc (csn cc0)) (λ x0 x1 . co (cfv (cv x1) clog) (cfv (cv x0) clog) cdiv)) (proof)
Theorem df_asin : wceq casin (cmpt (λ x0 . cc) (λ x0 . co (cneg ci) (cfv (co (co ci (cv x0) cmul) (cfv (co c1 (co (cv x0) c2 cexp) cmin) csqrt) caddc) clog) cmul)) (proof)
Theorem df_acos : wceq cacos (cmpt (λ x0 . cc) (λ x0 . co (co cpi c2 cdiv) (cfv (cv x0) casin) cmin)) (proof)
Theorem df_atan : wceq catan (cmpt (λ x0 . cdif cc (cpr (cneg ci) ci)) (λ x0 . co (co ci c2 cdiv) (co (cfv (co c1 (co ci (cv x0) cmul) cmin) clog) (cfv (co c1 (co ci (cv x0) cmul) caddc) clog) cmin) cmul)) (proof)
Theorem df_area : wceq carea (cmpt (λ x0 . crab (λ x1 . wa (wral (λ x2 . wcel (cima (cv x1) (csn (cv x2))) (cima (ccnv cvol) cr)) (λ x2 . cr)) (wcel (cmpt (λ x2 . cr) (λ x2 . cfv (cima (cv x1) (csn (cv x2))) cvol)) cibl)) (λ x1 . cpw (cxp cr cr))) (λ x0 . citg (λ x1 . cr) (λ x1 . cfv (cima (cv x0) (csn (cv x1))) cvol))) (proof)
Theorem df_em : wceq cem (csu cn (λ x0 . co (co c1 (cv x0) cdiv) (cfv (co c1 (co c1 (cv x0) cdiv) caddc) clog) cmin)) (proof)
Theorem df_zeta : wceq czeta (crio (λ x0 . wral (λ x1 . wceq (co (co c1 (co c2 (co c1 (cv x1) cmin) ccxp) cmin) (cfv (cv x1) (cv x0)) cmul) (csu cn0 (λ x2 . co (csu (co cc0 (cv x2) cfz) (λ x3 . co (co (co (cneg c1) (cv x3) cexp) (co (cv x2) (cv x3) cbc) cmul) (co (co (cv x3) c1 caddc) (cv x1) ccxp) cmul)) (co c2 (co (cv x2) c1 caddc) cexp) cdiv))) (λ x1 . cdif cc (csn c1))) (λ x0 . co (cdif cc (csn c1)) cc ccncf)) (proof)
Theorem df_lgam : wceq clgam (cmpt (λ x0 . cdif cc (cdif cz cn)) (λ x0 . co (csu cn (λ x1 . co (co (cv x0) (cfv (co (co (cv x1) c1 caddc) (cv x1) cdiv) clog) cmul) (cfv (co (co (cv x0) (cv x1) cdiv) c1 caddc) clog) cmin)) (cfv (cv x0) clog) cmin)) (proof)
Theorem df_gam : wceq cgam (ccom ce clgam) (proof)
Theorem df_igam : wceq cigam (cmpt (λ x0 . cc) (λ x0 . cif (wcel (cv x0) (cdif cz cn)) cc0 (co c1 (cfv (cv x0) cgam) cdiv))) (proof)
Theorem df_cht : wceq ccht (cmpt (λ x0 . cr) (λ x0 . csu (cin (co cc0 (cv x0) cicc) cprime) (λ x1 . cfv (cv x1) clog))) (proof)
Theorem df_vma : wceq cvma (cmpt (λ x0 . cn) (λ x0 . csb (crab (λ x1 . wbr (cv x1) (cv x0) cdvds) (λ x1 . cprime)) (λ x1 . cif (wceq (cfv (cv x1) chash) c1) (cfv (cuni (cv x1)) clog) cc0))) (proof)
Theorem df_chp : wceq cchp (cmpt (λ x0 . cr) (λ x0 . csu (co c1 (cfv (cv x0) cfl) cfz) (λ x1 . cfv (cv x1) cvma))) (proof)