Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrFzp..
/
ef83b..
PUZ54..
/
195f0..
vout
PrFzp..
/
083a2..
6.67 bars
TMd2S..
/
43c12..
negprop ownership controlledby
Pr6gx..
upto 0
TMWkG..
/
9e757..
ownership of
8b4f2..
as prop with payaddr
Pr6gx..
rights free controlledby
Pr6gx..
upto 0
TMQCp..
/
beade..
ownership of
c1d11..
as prop with payaddr
Pr6gx..
rights free controlledby
Pr6gx..
upto 0
PUPUe..
/
c8ac6..
doc published by
Pr6gx..
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Theorem
bcefe..
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
...
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
ordinal
ordinal
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Known
neq_0_ordsucc
neq_0_ordsucc
:
∀ x0 .
0
=
ordsucc
x0
⟶
∀ x1 : ο .
x1
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
ordinal_Empty
ordinal_Empty
:
ordinal
0
Known
ordinal_ordsucc
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
Theorem
8b4f2..
:
not
(
∀ x0 x1 .
ordinal
x0
⟶
ordinal
(
ordsucc
x1
)
⟶
or
(
x0
=
ordsucc
x1
)
(
ordsucc
x1
∈
x0
)
)
...