Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrKgQ../bfee5..
PUPVL../c0cb6..
vout
PrKgQ../033c1.. 0.13 bars
TMNJV../19b96.. ownership of e25fa.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMGpY../774c9.. ownership of 9bd4d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMSyD../4f939.. ownership of 77cc4.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJ8D../0d631.. ownership of fd96b.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMHUn../f5e0e.. ownership of 45658.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQPC../14be2.. ownership of 27a09.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJ9J../2aeb0.. ownership of e558d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMaYT../08edf.. ownership of 9d22e.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMWhj../3c233.. ownership of 7633a.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMXCY../b88e8.. ownership of 01e5b.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMddG../d0110.. ownership of 592be.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMGeJ../4878a.. ownership of 36f6f.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPD4../0c8fa.. ownership of 25e85.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMYmD../8c163.. ownership of f0bec.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZYo../d7072.. ownership of a0a6c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMF6D../08c67.. ownership of e80d3.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMF9p../03b2b.. ownership of 92911.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMT4D../c7942.. ownership of 21275.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMbDB../7833b.. ownership of 742d0.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMMSG../70f1a.. ownership of 8a66e.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPZN../2f4f1.. ownership of 4f9ac.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMMgd../1febb.. ownership of 09771.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMFof../fd5e5.. ownership of 83624.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMaLt../87945.. ownership of 56884.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMMZU../e4906.. ownership of a9f63.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMLn9../77a93.. ownership of 92ad8.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMKCR../a6881.. ownership of 07788.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMV1B../1bb82.. ownership of a8e71.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMHhs../e0f85.. ownership of 9b8cf.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMHwT../5fefc.. ownership of 775d1.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMU6d../c3a84.. ownership of f5637.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMaGb../c0e10.. ownership of 3f5e4.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMVLP../a77e7.. ownership of b0670.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMEo5../73685.. ownership of ec3b3.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
PUfqD../bf85e.. doc published by PrEBh..
Param unpack_p_iunpack_p_i : ι(ι(ιο) → ι) → ι
Param pack_ppack_p : ι(ιο) → ι
Param lamSigma : ι(ιι) → ι
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param apap : ιιι
Param ordsuccordsucc : ιι
Definition b0670.. := λ x0 x1 . unpack_p_i x0 (λ x2 . λ x3 : ι → ο . unpack_p_i x1 (λ x4 . λ x5 : ι → ο . pack_p (setprod x2 x4) (λ x6 . and (x3 (ap x6 0)) (x5 (ap x6 1)))))
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Known unpack_p_i_equnpack_p_i_eq : ∀ x0 : ι → (ι → ο) → ι . ∀ x1 . ∀ x2 : ι → ο . (∀ x3 : ι → ο . (∀ x4 . x4x1iff (x2 x4) (x3 x4))x0 x1 x3 = x0 x1 x2)unpack_p_i (pack_p x1 x2) x0 = x0 x1 x2
Known pack_p_extpack_p_ext : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . x3x0iff (x1 x3) (x2 x3))pack_p x0 x1 = pack_p x0 x2
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Theorem 9b8cf.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . ∀ x3 : ι → ο . b0670.. (pack_p x0 x1) (pack_p x2 x3) = pack_p (setprod x0 x2) (λ x5 . and (x1 (ap x5 0)) (x3 (ap x5 1))) (proof)
Definition struct_pstruct_p := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ο . x1 (pack_p x2 x3))x1 x0
Known pack_struct_p_Ipack_struct_p_I : ∀ x0 . ∀ x1 : ι → ο . struct_p (pack_p x0 x1)
Theorem 07788.. : ∀ x0 x1 . struct_p x0struct_p x1struct_p (b0670.. x0 x1) (proof)
Definition MetaCat_product_pproduct_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x6 x4 x7)) (x1 x6 x5 x8)) (∀ x10 . x0 x10∀ x11 x12 . x1 x10 x4 x11x1 x10 x5 x12and (and (and (x1 x10 x6 (x9 x10 x11 x12)) (x3 x10 x6 x4 x7 (x9 x10 x11 x12) = x11)) (x3 x10 x6 x5 x8 (x9 x10 x11 x12) = x12)) (∀ x13 . x1 x10 x6 x13x3 x10 x6 x4 x7 x13 = x11x3 x10 x6 x5 x8 x13 = x12x13 = x9 x10 x11 x12))
Definition MetaCat_product_constr_pproduct_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 x9 . x0 x8x0 x9MetaCat_product_p x0 x1 x2 x3 x8 x9 (x4 x8 x9) (x5 x8 x9) (x6 x8 x9) (x7 x8 x9)
Param UnaryPredHomHom_struct_p : ιιιο
Param struct_idstruct_id : ιι
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Param If_iIf_i : οιιι
Known and6Iand6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0x1x2x3x4x5and (and (and (and (and x0 x1) x2) x3) x4) x5
Known pack_p_0_eq2pack_p_0_eq2 : ∀ x0 . ∀ x1 : ι → ο . x0 = ap (pack_p x0 x1) 0
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known 55fb5..Hom_struct_p_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ο . ∀ x4 . UnaryPredHom (pack_p x0 x2) (pack_p x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0x2 x6x3 (ap x4 x6))
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known tuple_Sigma_etatuple_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known tuple_2_Sigmatuple_2_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0∀ x3 . x3x1 x2lam 2 (λ x4 . If_i (x4 = 0) x2 x3)lam x0 x1
Theorem a9f63.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_p x1)(∀ x1 x2 . x0 x1x0 x2x0 (b0670.. x1 x2))MetaCat_product_constr_p x0 UnaryPredHom struct_id struct_comp b0670.. (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 0)) (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 1)) (λ x1 x2 x3 x4 x5 . lam (ap x3 0) (λ x6 . lam 2 (λ x7 . If_i (x7 = 0) (ap x4 x6) (ap x5 x6)))) (proof)
Theorem 83624.. : MetaCat_product_constr_p struct_p UnaryPredHom struct_id struct_comp b0670.. (λ x0 x1 . lam (setprod (ap x0 0) (ap x1 0)) (λ x2 . ap x2 0)) (λ x0 x1 . lam (setprod (ap x0 0) (ap x1 0)) (λ x2 . ap x2 1)) (λ x0 x1 x2 x3 x4 . lam (ap x2 0) (λ x5 . lam 2 (λ x6 . If_i (x6 = 0) (ap x3 x5) (ap x4 x5)))) (proof)
Theorem 4f9ac..MetaCat_struct_p_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p struct_p UnaryPredHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition f5637.. := λ x0 x1 . unpack_p_i x0 (λ x2 . λ x3 : ι → ο . unpack_p_i x1 (λ x4 . λ x5 : ι → ο . pack_p (setexp x4 x2) (λ x6 . ∀ x7 . x7x2x3 x7x5 (ap x6 x7))))
Theorem 742d0.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . ∀ x3 : ι → ο . f5637.. (pack_p x0 x1) (pack_p x2 x3) = pack_p (setexp x2 x0) (λ x5 . ∀ x6 . x6x0x1 x6x3 (ap x5 x6)) (proof)
Theorem 92911.. : ∀ x0 x1 . struct_p x0struct_p x1struct_p (f5637.. x0 x1) (proof)
Definition MetaCat_exp_pexponent_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 x9 x10 x11 . λ x12 : ι → ι → ι . and (and (and (and (x0 x8) (x0 x9)) (x0 x10)) (x1 (x4 x10 x8) x9 x11)) (∀ x13 . x0 x13∀ x14 . x1 (x4 x13 x8) x9 x14and (and (x1 x13 x10 (x12 x13 x14)) (x3 (x4 x13 x8) (x4 x10 x8) x9 x11 (x7 x10 x8 (x4 x13 x8) (x3 (x4 x13 x8) x13 x10 (x12 x13 x14) (x5 x13 x8)) (x6 x13 x8)) = x14)) (∀ x15 . x1 x13 x10 x15x3 (x4 x13 x8) (x4 x10 x8) x9 x11 (x7 x10 x8 (x4 x13 x8) (x3 (x4 x13 x8) x13 x10 x15 (x5 x13 x8)) (x6 x13 x8)) = x14x15 = x12 x13 x14))
Definition MetaCat_exp_constr_pproduct_exponent_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 x9 : ι → ι → ι . λ x10 : ι → ι → ι → ι → ι . and (MetaCat_product_constr_p x0 x1 x2 x3 x4 x5 x6 x7) (∀ x11 x12 . x0 x11x0 x12MetaCat_exp_p x0 x1 x2 x3 x4 x5 x6 x7 x11 x12 (x8 x11 x12) (x9 x11 x12) (x10 x11 x12))
Known and5Iand5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4
Known tuple_2_setprodtuple_2_setprod : ∀ x0 x1 x2 . x2x0∀ x3 . x3x1lam 2 (λ x4 . If_i (x4 = 0) x2 x3)setprod x0 x1
Theorem a0a6c.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_p x1)(∀ x1 x2 . x0 x1x0 x2x0 (b0670.. x1 x2))(∀ x1 x2 . x0 x1x0 x2x0 (f5637.. x1 x2))MetaCat_exp_constr_p x0 UnaryPredHom struct_id struct_comp b0670.. (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 0)) (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 1)) (λ x1 x2 x3 x4 x5 . lam (ap x3 0) (λ x6 . lam 2 (λ x7 . If_i (x7 = 0) (ap x4 x6) (ap x5 x6)))) f5637.. (λ x1 x2 . lam (setprod (setexp (ap x2 0) (ap x1 0)) (ap x1 0)) (λ x3 . ap (ap x3 0) (ap x3 1))) (λ x1 x2 x3 x4 . lam (ap x3 0) (λ x5 . lam (ap x1 0) (λ x6 . ap x4 (lam 2 (λ x7 . If_i (x7 = 0) x5 x6))))) (proof)
Theorem 25e85.. : MetaCat_exp_constr_p struct_p UnaryPredHom struct_id struct_comp b0670.. (λ x0 x1 . lam (setprod (ap x0 0) (ap x1 0)) (λ x2 . ap x2 0)) (λ x0 x1 . lam (setprod (ap x0 0) (ap x1 0)) (λ x2 . ap x2 1)) (λ x0 x1 x2 x3 x4 . lam (ap x2 0) (λ x5 . lam 2 (λ x6 . If_i (x6 = 0) (ap x3 x5) (ap x4 x5)))) f5637.. (λ x0 x1 . lam (setprod (setexp (ap x1 0) (ap x0 0)) (ap x0 0)) (λ x2 . ap (ap x2 0) (ap x2 1))) (λ x0 x1 x2 x3 . lam (ap x2 0) (λ x4 . lam (ap x0 0) (λ x5 . ap x3 (lam 2 (λ x6 . If_i (x6 = 0) x4 x5))))) (proof)
Theorem 592be..MetaCat_struct_p_product_exponent : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι . (∀ x12 : ο . (∀ x13 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p struct_p UnaryPredHom struct_id struct_comp x1 x3 x5 x7 x9 x11 x13x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param unpack_p_ounpack_p_o : ι(ι(ιο) → ο) → ο
Definition PtdPredstruct_p_nonempty := λ x0 . and (struct_p x0) (unpack_p_o x0 (λ x1 . λ x2 : ι → ο . ∀ x3 : ο . (∀ x4 . and (x4x1) (x2 x4)x3)x3))
Known 93af6.. : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 : ο . (∀ x3 . and (x3x0) (x1 x3)x2)x2)PtdPred (pack_p x0 x1)
Known d8d91.. : ∀ x0 . PtdPred x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ο . ∀ x4 . x4x2x3 x4x1 (pack_p x2 x3))x1 x0
Theorem 7633a.. : ∀ x0 . PtdPred x0struct_p x0 (proof)
Theorem e558d.. : ∀ x0 x1 . PtdPred x0PtdPred x1PtdPred (b0670.. x0 x1) (proof)
Theorem 45658..MetaCat_struct_p_nonempty_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 77cc4.. : ∀ x0 x1 . PtdPred x0PtdPred x1PtdPred (f5637.. x0 x1) (proof)
Theorem e25fa..MetaCat_struct_p_nonempty_product_exponent : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι . (∀ x12 : ο . (∀ x13 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5 x7 x9 x11 x13x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)