Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrKgQ..
/
bfee5..
PUPVL..
/
c0cb6..
vout
PrKgQ..
/
033c1..
0.13 bars
TMNJV..
/
19b96..
ownership of
e25fa..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGpY..
/
774c9..
ownership of
9bd4d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMSyD..
/
4f939..
ownership of
77cc4..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJ8D..
/
0d631..
ownership of
fd96b..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMHUn..
/
f5e0e..
ownership of
45658..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQPC..
/
14be2..
ownership of
27a09..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJ9J..
/
2aeb0..
ownership of
e558d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMaYT..
/
08edf..
ownership of
9d22e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMWhj..
/
3c233..
ownership of
7633a..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXCY..
/
b88e8..
ownership of
01e5b..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMddG..
/
d0110..
ownership of
592be..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGeJ..
/
4878a..
ownership of
36f6f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPD4..
/
0c8fa..
ownership of
25e85..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMYmD..
/
8c163..
ownership of
f0bec..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZYo..
/
d7072..
ownership of
a0a6c..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMF6D..
/
08c67..
ownership of
e80d3..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMF9p..
/
03b2b..
ownership of
92911..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMT4D..
/
c7942..
ownership of
21275..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbDB..
/
7833b..
ownership of
742d0..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMMSG..
/
70f1a..
ownership of
8a66e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPZN..
/
2f4f1..
ownership of
4f9ac..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMMgd..
/
1febb..
ownership of
09771..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFof..
/
fd5e5..
ownership of
83624..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMaLt..
/
87945..
ownership of
56884..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMMZU..
/
e4906..
ownership of
a9f63..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMLn9..
/
77a93..
ownership of
92ad8..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMKCR..
/
a6881..
ownership of
07788..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMV1B..
/
1bb82..
ownership of
a8e71..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMHhs..
/
e0f85..
ownership of
9b8cf..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMHwT..
/
5fefc..
ownership of
775d1..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMU6d..
/
c3a84..
ownership of
f5637..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMaGb..
/
c0e10..
ownership of
3f5e4..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMVLP..
/
a77e7..
ownership of
b0670..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMEo5..
/
73685..
ownership of
ec3b3..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
PUfqD..
/
bf85e..
doc published by
PrEBh..
Param
unpack_p_i
unpack_p_i
:
ι
→
(
ι
→
(
ι
→
ο
) →
ι
) →
ι
Param
pack_p
pack_p
:
ι
→
(
ι
→
ο
) →
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
ap
ap
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
b0670..
:=
λ x0 x1 .
unpack_p_i
x0
(
λ x2 .
λ x3 :
ι → ο
.
unpack_p_i
x1
(
λ x4 .
λ x5 :
ι → ο
.
pack_p
(
setprod
x2
x4
)
(
λ x6 .
and
(
x3
(
ap
x6
0
)
)
(
x5
(
ap
x6
1
)
)
)
)
)
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
unpack_p_i_eq
unpack_p_i_eq
:
∀ x0 :
ι →
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
iff
(
x2
x4
)
(
x3
x4
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_p_i
(
pack_p
x1
x2
)
x0
=
x0
x1
x2
Known
pack_p_ext
pack_p_ext
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
pack_p
x0
x1
=
pack_p
x0
x2
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Theorem
9b8cf..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
∀ x3 :
ι → ο
.
b0670..
(
pack_p
x0
x1
)
(
pack_p
x2
x3
)
=
pack_p
(
setprod
x0
x2
)
(
λ x5 .
and
(
x1
(
ap
x5
0
)
)
(
x3
(
ap
x5
1
)
)
)
(proof)
Definition
struct_p
struct_p
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ο
.
x1
(
pack_p
x2
x3
)
)
⟶
x1
x0
Known
pack_struct_p_I
pack_struct_p_I
:
∀ x0 .
∀ x1 :
ι → ο
.
struct_p
(
pack_p
x0
x1
)
Theorem
07788..
:
∀ x0 x1 .
struct_p
x0
⟶
struct_p
x1
⟶
struct_p
(
b0670..
x0
x1
)
(proof)
Definition
MetaCat_product_p
product_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x6
x4
x7
)
)
(
x1
x6
x5
x8
)
)
(
∀ x10 .
x0
x10
⟶
∀ x11 x12 .
x1
x10
x4
x11
⟶
x1
x10
x5
x12
⟶
and
(
and
(
and
(
x1
x10
x6
(
x9
x10
x11
x12
)
)
(
x3
x10
x6
x4
x7
(
x9
x10
x11
x12
)
=
x11
)
)
(
x3
x10
x6
x5
x8
(
x9
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x10
x6
x13
⟶
x3
x10
x6
x4
x7
x13
=
x11
⟶
x3
x10
x6
x5
x8
x13
=
x12
⟶
x13
=
x9
x10
x11
x12
)
)
Definition
MetaCat_product_constr_p
product_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 .
x0
x8
⟶
x0
x9
⟶
MetaCat_product_p
x0
x1
x2
x3
x8
x9
(
x4
x8
x9
)
(
x5
x8
x9
)
(
x6
x8
x9
)
(
x7
x8
x9
)
Param
UnaryPredHom
Hom_struct_p
:
ι
→
ι
→
ι
→
ο
Param
struct_id
struct_id
:
ι
→
ι
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
and6I
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Known
pack_p_0_eq2
pack_p_0_eq2
:
∀ x0 .
∀ x1 :
ι → ο
.
x0
=
ap
(
pack_p
x0
x1
)
0
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
55fb5..
Hom_struct_p_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 .
UnaryPredHom
(
pack_p
x0
x2
)
(
pack_p
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
x2
x6
⟶
x3
(
ap
x4
x6
)
)
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
tuple_Sigma_eta
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_Sigma
tuple_2_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
x2
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
lam
x0
x1
Theorem
a9f63..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_p
x1
)
⟶
(
∀ x1 x2 .
x0
x1
⟶
x0
x2
⟶
x0
(
b0670..
x1
x2
)
)
⟶
MetaCat_product_constr_p
x0
UnaryPredHom
struct_id
struct_comp
b0670..
(
λ x1 x2 .
lam
(
setprod
(
ap
x1
0
)
(
ap
x2
0
)
)
(
λ x3 .
ap
x3
0
)
)
(
λ x1 x2 .
lam
(
setprod
(
ap
x1
0
)
(
ap
x2
0
)
)
(
λ x3 .
ap
x3
1
)
)
(
λ x1 x2 x3 x4 x5 .
lam
(
ap
x3
0
)
(
λ x6 .
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
(
ap
x4
x6
)
(
ap
x5
x6
)
)
)
)
(proof)
Theorem
83624..
:
MetaCat_product_constr_p
struct_p
UnaryPredHom
struct_id
struct_comp
b0670..
(
λ x0 x1 .
lam
(
setprod
(
ap
x0
0
)
(
ap
x1
0
)
)
(
λ x2 .
ap
x2
0
)
)
(
λ x0 x1 .
lam
(
setprod
(
ap
x0
0
)
(
ap
x1
0
)
)
(
λ x2 .
ap
x2
1
)
)
(
λ x0 x1 x2 x3 x4 .
lam
(
ap
x2
0
)
(
λ x5 .
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
(
ap
x3
x5
)
(
ap
x4
x5
)
)
)
)
(proof)
Theorem
4f9ac..
MetaCat_struct_p_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
struct_p
UnaryPredHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
f5637..
:=
λ x0 x1 .
unpack_p_i
x0
(
λ x2 .
λ x3 :
ι → ο
.
unpack_p_i
x1
(
λ x4 .
λ x5 :
ι → ο
.
pack_p
(
setexp
x4
x2
)
(
λ x6 .
∀ x7 .
x7
∈
x2
⟶
x3
x7
⟶
x5
(
ap
x6
x7
)
)
)
)
Theorem
742d0..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
∀ x3 :
ι → ο
.
f5637..
(
pack_p
x0
x1
)
(
pack_p
x2
x3
)
=
pack_p
(
setexp
x2
x0
)
(
λ x5 .
∀ x6 .
x6
∈
x0
⟶
x1
x6
⟶
x3
(
ap
x5
x6
)
)
(proof)
Theorem
92911..
:
∀ x0 x1 .
struct_p
x0
⟶
struct_p
x1
⟶
struct_p
(
f5637..
x0
x1
)
(proof)
Definition
MetaCat_exp_p
exponent_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 x9 x10 x11 .
λ x12 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
x0
x8
)
(
x0
x9
)
)
(
x0
x10
)
)
(
x1
(
x4
x10
x8
)
x9
x11
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
(
x4
x13
x8
)
x9
x14
⟶
and
(
and
(
x1
x13
x10
(
x12
x13
x14
)
)
(
x3
(
x4
x13
x8
)
(
x4
x10
x8
)
x9
x11
(
x7
x10
x8
(
x4
x13
x8
)
(
x3
(
x4
x13
x8
)
x13
x10
(
x12
x13
x14
)
(
x5
x13
x8
)
)
(
x6
x13
x8
)
)
=
x14
)
)
(
∀ x15 .
x1
x13
x10
x15
⟶
x3
(
x4
x13
x8
)
(
x4
x10
x8
)
x9
x11
(
x7
x10
x8
(
x4
x13
x8
)
(
x3
(
x4
x13
x8
)
x13
x10
x15
(
x5
x13
x8
)
)
(
x6
x13
x8
)
)
=
x14
⟶
x15
=
x12
x13
x14
)
)
Definition
MetaCat_exp_constr_p
product_exponent_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 x9 :
ι →
ι → ι
.
λ x10 :
ι →
ι →
ι →
ι → ι
.
and
(
MetaCat_product_constr_p
x0
x1
x2
x3
x4
x5
x6
x7
)
(
∀ x11 x12 .
x0
x11
⟶
x0
x12
⟶
MetaCat_exp_p
x0
x1
x2
x3
x4
x5
x6
x7
x11
x12
(
x8
x11
x12
)
(
x9
x11
x12
)
(
x10
x11
x12
)
)
Known
and5I
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Theorem
a0a6c..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_p
x1
)
⟶
(
∀ x1 x2 .
x0
x1
⟶
x0
x2
⟶
x0
(
b0670..
x1
x2
)
)
⟶
(
∀ x1 x2 .
x0
x1
⟶
x0
x2
⟶
x0
(
f5637..
x1
x2
)
)
⟶
MetaCat_exp_constr_p
x0
UnaryPredHom
struct_id
struct_comp
b0670..
(
λ x1 x2 .
lam
(
setprod
(
ap
x1
0
)
(
ap
x2
0
)
)
(
λ x3 .
ap
x3
0
)
)
(
λ x1 x2 .
lam
(
setprod
(
ap
x1
0
)
(
ap
x2
0
)
)
(
λ x3 .
ap
x3
1
)
)
(
λ x1 x2 x3 x4 x5 .
lam
(
ap
x3
0
)
(
λ x6 .
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
(
ap
x4
x6
)
(
ap
x5
x6
)
)
)
)
f5637..
(
λ x1 x2 .
lam
(
setprod
(
setexp
(
ap
x2
0
)
(
ap
x1
0
)
)
(
ap
x1
0
)
)
(
λ x3 .
ap
(
ap
x3
0
)
(
ap
x3
1
)
)
)
(
λ x1 x2 x3 x4 .
lam
(
ap
x3
0
)
(
λ x5 .
lam
(
ap
x1
0
)
(
λ x6 .
ap
x4
(
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
x5
x6
)
)
)
)
)
(proof)
Theorem
25e85..
:
MetaCat_exp_constr_p
struct_p
UnaryPredHom
struct_id
struct_comp
b0670..
(
λ x0 x1 .
lam
(
setprod
(
ap
x0
0
)
(
ap
x1
0
)
)
(
λ x2 .
ap
x2
0
)
)
(
λ x0 x1 .
lam
(
setprod
(
ap
x0
0
)
(
ap
x1
0
)
)
(
λ x2 .
ap
x2
1
)
)
(
λ x0 x1 x2 x3 x4 .
lam
(
ap
x2
0
)
(
λ x5 .
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
(
ap
x3
x5
)
(
ap
x4
x5
)
)
)
)
f5637..
(
λ x0 x1 .
lam
(
setprod
(
setexp
(
ap
x1
0
)
(
ap
x0
0
)
)
(
ap
x0
0
)
)
(
λ x2 .
ap
(
ap
x2
0
)
(
ap
x2
1
)
)
)
(
λ x0 x1 x2 x3 .
lam
(
ap
x2
0
)
(
λ x4 .
lam
(
ap
x0
0
)
(
λ x5 .
ap
x3
(
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
x4
x5
)
)
)
)
)
(proof)
Theorem
592be..
MetaCat_struct_p_product_exponent
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι → ι
.
(
∀ x12 : ο .
(
∀ x13 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
struct_p
UnaryPredHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
x13
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
unpack_p_o
unpack_p_o
:
ι
→
(
ι
→
(
ι
→
ο
) →
ο
) →
ο
Definition
PtdPred
struct_p_nonempty
:=
λ x0 .
and
(
struct_p
x0
)
(
unpack_p_o
x0
(
λ x1 .
λ x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
x2
x4
)
⟶
x3
)
⟶
x3
)
)
Known
93af6..
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
PtdPred
(
pack_p
x0
x1
)
Known
d8d91..
:
∀ x0 .
PtdPred
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ο
.
∀ x4 .
x4
∈
x2
⟶
x3
x4
⟶
x1
(
pack_p
x2
x3
)
)
⟶
x1
x0
Theorem
7633a..
:
∀ x0 .
PtdPred
x0
⟶
struct_p
x0
(proof)
Theorem
e558d..
:
∀ x0 x1 .
PtdPred
x0
⟶
PtdPred
x1
⟶
PtdPred
(
b0670..
x0
x1
)
(proof)
Theorem
45658..
MetaCat_struct_p_nonempty_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
PtdPred
UnaryPredHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
77cc4..
:
∀ x0 x1 .
PtdPred
x0
⟶
PtdPred
x1
⟶
PtdPred
(
f5637..
x0
x1
)
(proof)
Theorem
e25fa..
MetaCat_struct_p_nonempty_product_exponent
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι → ι
.
(
∀ x12 : ο .
(
∀ x13 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
PtdPred
UnaryPredHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
x13
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)