Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrD42../eb261..
PUVor../19efb..
vout
PrD42../492cf.. 1,289.99 bars
TMa1D../be95c.. ownership of dd73c.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMWXQ../dcae7.. ownership of c97e7.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMRNZ../91ee3.. ownership of 2bba3.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMUB3../ee3d4.. ownership of 39da1.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMdBV../1df6c.. ownership of e6151.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcSW../8b7b9.. ownership of af097.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
PUPcM../898cd.. doc published by PrCx1..
Param lam_idlam_id : ιι
Param apap : ιιι
Definition struct_idstruct_id := λ x0 . lam_id (ap x0 0)
Param lam_complam_comp : ιιιι
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param struct_cstruct_c : ιο
Param unpack_c_ounpack_c_o : ι(ι((ιο) → ο) → ο) → ο
Param notnot : οο
Definition Hausdorff_Topology_buggystruct_c_Hausdorff_topology := λ x0 . and (struct_c x0) (unpack_c_o x0 (λ x1 . λ x2 : (ι → ο) → ο . and (and (and (x2 (λ x3 . x3x1)) (∀ x3 x4 : ι → ο . x2 x3x2 x4x2 (λ x5 . and (x3 x5) (x3 x5)))) (∀ x3 : (ι → ο) → ο . (∀ x4 : ι → ο . x3 x4x2 x4)x2 (λ x4 . ∃ x5 : ι → ο . and (x3 x5) (x5 x4)))) (∀ x3 . x3x1∀ x4 . x4x1(x3 = x4∀ x5 : ο . x5)∃ x5 x7 : ι → ο . and (and (and (and (x2 x5) (x2 x7)) (x5 x3)) (x7 x4)) (∀ x9 . x5 x9not (x7 x9)))))
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Param PreContinuousHomHom_struct_c : ιιιο
Known dd75c..MetaCat_struct_c_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_c x1)MetaCat x0 PreContinuousHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem 2bba3..MetaCat_struct_c_Hausdorff_topology : MetaCat Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp
...

Param MetaFunctorMetaFunctor : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param TrueTrue : ο
Param HomSetSetHom : ιιιο
Known 58a40..MetaCat_struct_c_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_c x1)MetaFunctor x0 PreContinuousHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem dd73c..MetaCat_struct_c_Hausdorff_topology_Forgetful : MetaFunctor Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
...

Param MetaCat_initial_pinitial_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture 28373..MetaCat_struct_c_Hausdorff_topology_initial : ∃ x0 . ∃ x2 : ι → ι . MetaCat_initial_p Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp x0 x2
Param MetaCat_terminal_pterminal_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture 3bc02..MetaCat_struct_c_Hausdorff_topology_terminal : ∃ x0 . ∃ x2 : ι → ι . MetaCat_terminal_p Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp x0 x2
Param MetaCat_coproduct_constr_pcoproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture 39318..MetaCat_struct_c_Hausdorff_topology_coproduct_constr : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_product_constr_pproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture 03687..MetaCat_struct_c_Hausdorff_topology_product_constr : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_coequalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture d69b8.. : ∃ x0 x2 : ι → ι → ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp x0 x2 x4
Param MetaCat_equalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture a3c8c.. : ∃ x0 x2 : ι → ι → ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp x0 x2 x4
Param MetaCat_pushout_buggy_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture fc1db.. : ∃ x0 x2 x4 : ι → ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_pullback_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture 5fb6c.. : ∃ x0 x2 x4 : ι → ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_exp_constr_pproduct_exponent_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιιιι) → ο
Conjecture c8e85..MetaCat_struct_c_Hausdorff_topology_product_exponent : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . ∃ x8 x10 : ι → ι → ι . ∃ x12 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp x0 x2 x4 x6 x8 x10 x12
Param MetaCat_subobject_classifier_buggy_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιι(ιιιι) → (ιιιιιιι) → ο
Conjecture 1eb47.. : ∃ x0 . ∃ x2 : ι → ι . ∃ x4 x6 . ∃ x8 : ι → ι → ι → ι . ∃ x10 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_buggy_p Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp x0 x2 x4 x6 x8 x10
Param MetaCat_nno_pnno_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιιι(ιιιι) → ο
Conjecture 71b81..MetaCat_struct_c_Hausdorff_topology_nno : ∃ x0 . ∃ x2 : ι → ι . ∃ x4 x6 x8 . ∃ x10 : ι → ι → ι → ι . MetaCat_nno_p Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp x0 x2 x4 x6 x8 x10
Param MetaAdjunction_strictMetaAdjunction_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Conjecture b66fd..MetaCat_struct_c_Hausdorff_topology_left_adjoint_forgetful : ∃ x0 : ι → ι . ∃ x2 : ι → ι → ι → ι . ∃ x4 x6 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) Hausdorff_Topology_buggy PreContinuousHom struct_id struct_comp x0 x2 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x4 x6