Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrLEg..
/
52a33..
PUf9F..
/
9c641..
vout
PrLEg..
/
b37d8..
0.08 bars
TMYMi..
/
291cc..
ownership of
cd63f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQ21..
/
47045..
ownership of
a3ef4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMShf..
/
44b52..
ownership of
8aac7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQFz..
/
94292..
ownership of
ba1be..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUS5..
/
30821..
ownership of
2cba7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdGs..
/
a507e..
ownership of
7da2a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHti..
/
d9c27..
ownership of
07117..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXAr..
/
14d99..
ownership of
d7285..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPAk..
/
31e11..
ownership of
136a9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZpv..
/
80c3e..
ownership of
1e2e6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZFL..
/
9d039..
ownership of
8365f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdiB..
/
d8dd2..
ownership of
4e50c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTto..
/
af9ea..
ownership of
42999..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJCt..
/
c1add..
ownership of
aa1b5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPNY..
/
6f34b..
ownership of
e8183..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQzU..
/
dbf79..
ownership of
f66b1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPDf..
/
79ac8..
ownership of
904ea..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKTr..
/
7608b..
ownership of
a2bdb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYSb..
/
557b7..
ownership of
77fa4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSbN..
/
0bf55..
ownership of
4119b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdLK..
/
c7aa4..
ownership of
a64b2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXme..
/
8ab78..
ownership of
f000d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUTxc..
/
a3963..
doc published by
PrGxv..
Param
SNo
SNo
:
ι
→
ο
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Param
minus_SNo
minus_SNo
:
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Known
idl_negcycle_6
idl_negcycle_6
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNoLt
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
x11
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x6
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x7
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x8
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x9
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x10
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x5
)
)
x11
⟶
False
Known
minus_SNo_Lt_contra3
minus_SNo_Lt_contra3
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
(
minus_SNo
x0
)
(
minus_SNo
x1
)
⟶
SNoLt
x1
x0
Known
SNo_0
SNo_0
:
SNo
0
Known
SNo_add_SNo_6
SNo_add_SNo_6
:
∀ x0 x1 x2 x3 x4 x5 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
x5
)
)
)
)
)
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
minus_add_SNo_distr_m_5
minus_add_SNo_distr_m_5
:
∀ x0 x1 x2 x3 x4 x5 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
x5
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
minus_SNo
x5
)
)
)
)
)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
minus_SNo_Le_swap
minus_SNo_Le_swap
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
(
minus_SNo
x0
)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Theorem
a64b2..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNoLt
0
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
x11
)
)
)
)
)
⟶
SNoLe
x6
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
x7
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
x8
(
add_SNo
x2
(
minus_SNo
x3
)
)
⟶
SNoLe
x9
(
add_SNo
x3
(
minus_SNo
x4
)
)
⟶
SNoLe
x10
(
add_SNo
x4
(
minus_SNo
x5
)
)
⟶
SNoLe
x11
(
add_SNo
x5
(
minus_SNo
x0
)
)
⟶
False
(proof)
Known
idl_negcycle_7
idl_negcycle_7
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNoLt
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
x13
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x7
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x8
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x9
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x10
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x11
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x12
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x6
)
)
x13
⟶
False
Known
SNo_add_SNo_7
SNo_add_SNo_7
:
∀ x0 x1 x2 x3 x4 x5 x6 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
x6
)
)
)
)
)
)
Known
minus_add_SNo_distr_m_6
minus_add_SNo_distr_m_6
:
∀ x0 x1 x2 x3 x4 x5 x6 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
x6
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
minus_SNo
x6
)
)
)
)
)
)
Theorem
77fa4..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNoLt
0
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
x13
)
)
)
)
)
)
⟶
SNoLe
x7
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
x8
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
x9
(
add_SNo
x2
(
minus_SNo
x3
)
)
⟶
SNoLe
x10
(
add_SNo
x3
(
minus_SNo
x4
)
)
⟶
SNoLe
x11
(
add_SNo
x4
(
minus_SNo
x5
)
)
⟶
SNoLe
x12
(
add_SNo
x5
(
minus_SNo
x6
)
)
⟶
SNoLe
x13
(
add_SNo
x6
(
minus_SNo
x0
)
)
⟶
False
(proof)
Known
idl_negcycle_8
idl_negcycle_8
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNoLt
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
x15
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x8
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x9
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x10
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x11
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x12
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x13
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x14
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x7
)
)
x15
⟶
False
Known
SNo_add_SNo_8
SNo_add_SNo_8
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
x7
)
)
)
)
)
)
)
Known
minus_add_SNo_distr_m_7
minus_add_SNo_distr_m_7
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
x7
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
minus_SNo
x7
)
)
)
)
)
)
)
Theorem
904ea..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNoLt
0
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
x15
)
)
)
)
)
)
)
⟶
SNoLe
x8
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
x9
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
x10
(
add_SNo
x2
(
minus_SNo
x3
)
)
⟶
SNoLe
x11
(
add_SNo
x3
(
minus_SNo
x4
)
)
⟶
SNoLe
x12
(
add_SNo
x4
(
minus_SNo
x5
)
)
⟶
SNoLe
x13
(
add_SNo
x5
(
minus_SNo
x6
)
)
⟶
SNoLe
x14
(
add_SNo
x6
(
minus_SNo
x7
)
)
⟶
SNoLe
x15
(
add_SNo
x7
(
minus_SNo
x0
)
)
⟶
False
(proof)
Known
idl_negcycle_9
idl_negcycle_9
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNoLt
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
x17
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x9
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x10
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x11
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x12
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x13
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x14
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x15
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x16
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x8
)
)
x17
⟶
False
Known
SNo_add_SNo_9
SNo_add_SNo_9
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
x8
)
)
)
)
)
)
)
)
Known
minus_add_SNo_distr_m_8
minus_add_SNo_distr_m_8
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
x8
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
minus_SNo
x8
)
)
)
)
)
)
)
)
Theorem
e8183..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNoLt
0
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
x17
)
)
)
)
)
)
)
)
⟶
SNoLe
x9
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
x10
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
x11
(
add_SNo
x2
(
minus_SNo
x3
)
)
⟶
SNoLe
x12
(
add_SNo
x3
(
minus_SNo
x4
)
)
⟶
SNoLe
x13
(
add_SNo
x4
(
minus_SNo
x5
)
)
⟶
SNoLe
x14
(
add_SNo
x5
(
minus_SNo
x6
)
)
⟶
SNoLe
x15
(
add_SNo
x6
(
minus_SNo
x7
)
)
⟶
SNoLe
x16
(
add_SNo
x7
(
minus_SNo
x8
)
)
⟶
SNoLe
x17
(
add_SNo
x8
(
minus_SNo
x0
)
)
⟶
False
(proof)
Known
idl_negcycle_10
idl_negcycle_10
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNoLt
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
x19
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x10
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x11
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x12
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x13
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x14
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x15
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x16
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x17
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x18
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x9
)
)
x19
⟶
False
Known
SNo_add_SNo_10
SNo_add_SNo_10
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
x9
)
)
)
)
)
)
)
)
)
Known
minus_add_SNo_distr_m_9
minus_add_SNo_distr_m_9
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
x9
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
minus_SNo
x9
)
)
)
)
)
)
)
)
)
Theorem
42999..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNoLt
0
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
x19
)
)
)
)
)
)
)
)
)
⟶
SNoLe
x10
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
x11
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
x12
(
add_SNo
x2
(
minus_SNo
x3
)
)
⟶
SNoLe
x13
(
add_SNo
x3
(
minus_SNo
x4
)
)
⟶
SNoLe
x14
(
add_SNo
x4
(
minus_SNo
x5
)
)
⟶
SNoLe
x15
(
add_SNo
x5
(
minus_SNo
x6
)
)
⟶
SNoLe
x16
(
add_SNo
x6
(
minus_SNo
x7
)
)
⟶
SNoLe
x17
(
add_SNo
x7
(
minus_SNo
x8
)
)
⟶
SNoLe
x18
(
add_SNo
x8
(
minus_SNo
x9
)
)
⟶
SNoLe
x19
(
add_SNo
x9
(
minus_SNo
x0
)
)
⟶
False
(proof)
Known
idl_negcycle_11
idl_negcycle_11
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNoLt
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
x21
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x11
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x12
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x13
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x14
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x15
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x16
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x17
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x18
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x19
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x20
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x10
)
)
x21
⟶
False
Known
SNo_add_SNo_11
SNo_add_SNo_11
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
x10
)
)
)
)
)
)
)
)
)
)
Known
minus_add_SNo_distr_m_10
minus_add_SNo_distr_m_10
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
x10
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
minus_SNo
x10
)
)
)
)
)
)
)
)
)
)
Theorem
8365f..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNoLt
0
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
x21
)
)
)
)
)
)
)
)
)
)
⟶
SNoLe
x11
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
x12
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
x13
(
add_SNo
x2
(
minus_SNo
x3
)
)
⟶
SNoLe
x14
(
add_SNo
x3
(
minus_SNo
x4
)
)
⟶
SNoLe
x15
(
add_SNo
x4
(
minus_SNo
x5
)
)
⟶
SNoLe
x16
(
add_SNo
x5
(
minus_SNo
x6
)
)
⟶
SNoLe
x17
(
add_SNo
x6
(
minus_SNo
x7
)
)
⟶
SNoLe
x18
(
add_SNo
x7
(
minus_SNo
x8
)
)
⟶
SNoLe
x19
(
add_SNo
x8
(
minus_SNo
x9
)
)
⟶
SNoLe
x20
(
add_SNo
x9
(
minus_SNo
x10
)
)
⟶
SNoLe
x21
(
add_SNo
x10
(
minus_SNo
x0
)
)
⟶
False
(proof)
Known
idl_negcycle_12
idl_negcycle_12
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNoLt
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
x23
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x12
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x13
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x14
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x15
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x16
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x17
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x18
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x19
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x20
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x21
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x22
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x11
)
)
x23
⟶
False
Known
SNo_add_SNo_12
SNo_add_SNo_12
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
x11
)
)
)
)
)
)
)
)
)
)
)
Known
minus_add_SNo_distr_m_11
minus_add_SNo_distr_m_11
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
x11
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
minus_SNo
x11
)
)
)
)
)
)
)
)
)
)
)
Theorem
136a9..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNoLt
0
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
x23
)
)
)
)
)
)
)
)
)
)
)
⟶
SNoLe
x12
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
x13
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
x14
(
add_SNo
x2
(
minus_SNo
x3
)
)
⟶
SNoLe
x15
(
add_SNo
x3
(
minus_SNo
x4
)
)
⟶
SNoLe
x16
(
add_SNo
x4
(
minus_SNo
x5
)
)
⟶
SNoLe
x17
(
add_SNo
x5
(
minus_SNo
x6
)
)
⟶
SNoLe
x18
(
add_SNo
x6
(
minus_SNo
x7
)
)
⟶
SNoLe
x19
(
add_SNo
x7
(
minus_SNo
x8
)
)
⟶
SNoLe
x20
(
add_SNo
x8
(
minus_SNo
x9
)
)
⟶
SNoLe
x21
(
add_SNo
x9
(
minus_SNo
x10
)
)
⟶
SNoLe
x22
(
add_SNo
x10
(
minus_SNo
x11
)
)
⟶
SNoLe
x23
(
add_SNo
x11
(
minus_SNo
x0
)
)
⟶
False
(proof)
Known
idl_negcycle_13
idl_negcycle_13
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNoLt
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
x25
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x13
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x14
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x15
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x16
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x17
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x18
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x19
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x20
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x21
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x22
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x23
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x24
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x12
)
)
x25
⟶
False
Known
SNo_add_SNo_13
SNo_add_SNo_13
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
x12
)
)
)
)
)
)
)
)
)
)
)
)
Known
minus_add_SNo_distr_m_12
minus_add_SNo_distr_m_12
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
x12
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
minus_SNo
x12
)
)
)
)
)
)
)
)
)
)
)
)
Theorem
07117..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNoLt
0
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
x25
)
)
)
)
)
)
)
)
)
)
)
)
⟶
SNoLe
x13
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
x14
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
x15
(
add_SNo
x2
(
minus_SNo
x3
)
)
⟶
SNoLe
x16
(
add_SNo
x3
(
minus_SNo
x4
)
)
⟶
SNoLe
x17
(
add_SNo
x4
(
minus_SNo
x5
)
)
⟶
SNoLe
x18
(
add_SNo
x5
(
minus_SNo
x6
)
)
⟶
SNoLe
x19
(
add_SNo
x6
(
minus_SNo
x7
)
)
⟶
SNoLe
x20
(
add_SNo
x7
(
minus_SNo
x8
)
)
⟶
SNoLe
x21
(
add_SNo
x8
(
minus_SNo
x9
)
)
⟶
SNoLe
x22
(
add_SNo
x9
(
minus_SNo
x10
)
)
⟶
SNoLe
x23
(
add_SNo
x10
(
minus_SNo
x11
)
)
⟶
SNoLe
x24
(
add_SNo
x11
(
minus_SNo
x12
)
)
⟶
SNoLe
x25
(
add_SNo
x12
(
minus_SNo
x0
)
)
⟶
False
(proof)
Known
idl_negcycle_14
idl_negcycle_14
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNoLt
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
x27
)
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x14
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x15
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x16
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x17
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x18
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x19
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x20
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x21
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x22
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x23
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x24
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x25
⟶
SNoLe
(
add_SNo
x13
(
minus_SNo
x12
)
)
x26
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x13
)
)
x27
⟶
False
Known
SNo_add_SNo_14
SNo_add_SNo_14
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
x13
)
)
)
)
)
)
)
)
)
)
)
)
)
Known
minus_add_SNo_distr_m_13
minus_add_SNo_distr_m_13
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
x13
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
minus_SNo
x13
)
)
)
)
)
)
)
)
)
)
)
)
)
Theorem
2cba7..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNoLt
0
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
x27
)
)
)
)
)
)
)
)
)
)
)
)
)
⟶
SNoLe
x14
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
x15
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
x16
(
add_SNo
x2
(
minus_SNo
x3
)
)
⟶
SNoLe
x17
(
add_SNo
x3
(
minus_SNo
x4
)
)
⟶
SNoLe
x18
(
add_SNo
x4
(
minus_SNo
x5
)
)
⟶
SNoLe
x19
(
add_SNo
x5
(
minus_SNo
x6
)
)
⟶
SNoLe
x20
(
add_SNo
x6
(
minus_SNo
x7
)
)
⟶
SNoLe
x21
(
add_SNo
x7
(
minus_SNo
x8
)
)
⟶
SNoLe
x22
(
add_SNo
x8
(
minus_SNo
x9
)
)
⟶
SNoLe
x23
(
add_SNo
x9
(
minus_SNo
x10
)
)
⟶
SNoLe
x24
(
add_SNo
x10
(
minus_SNo
x11
)
)
⟶
SNoLe
x25
(
add_SNo
x11
(
minus_SNo
x12
)
)
⟶
SNoLe
x26
(
add_SNo
x12
(
minus_SNo
x13
)
)
⟶
SNoLe
x27
(
add_SNo
x13
(
minus_SNo
x0
)
)
⟶
False
(proof)
Known
idl_negcycle_15
idl_negcycle_15
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNoLt
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
x29
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x15
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x16
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x17
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x18
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x19
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x20
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x21
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x22
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x23
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x24
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x25
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x26
⟶
SNoLe
(
add_SNo
x13
(
minus_SNo
x12
)
)
x27
⟶
SNoLe
(
add_SNo
x14
(
minus_SNo
x13
)
)
x28
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x14
)
)
x29
⟶
False
Known
SNo_add_SNo_15
SNo_add_SNo_15
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
x14
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Known
minus_add_SNo_distr_m_14
minus_add_SNo_distr_m_14
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
x14
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
minus_SNo
x14
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Theorem
8aac7..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNoLt
0
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
x29
)
)
)
)
)
)
)
)
)
)
)
)
)
)
⟶
SNoLe
x15
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
x16
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
x17
(
add_SNo
x2
(
minus_SNo
x3
)
)
⟶
SNoLe
x18
(
add_SNo
x3
(
minus_SNo
x4
)
)
⟶
SNoLe
x19
(
add_SNo
x4
(
minus_SNo
x5
)
)
⟶
SNoLe
x20
(
add_SNo
x5
(
minus_SNo
x6
)
)
⟶
SNoLe
x21
(
add_SNo
x6
(
minus_SNo
x7
)
)
⟶
SNoLe
x22
(
add_SNo
x7
(
minus_SNo
x8
)
)
⟶
SNoLe
x23
(
add_SNo
x8
(
minus_SNo
x9
)
)
⟶
SNoLe
x24
(
add_SNo
x9
(
minus_SNo
x10
)
)
⟶
SNoLe
x25
(
add_SNo
x10
(
minus_SNo
x11
)
)
⟶
SNoLe
x26
(
add_SNo
x11
(
minus_SNo
x12
)
)
⟶
SNoLe
x27
(
add_SNo
x12
(
minus_SNo
x13
)
)
⟶
SNoLe
x28
(
add_SNo
x13
(
minus_SNo
x14
)
)
⟶
SNoLe
x29
(
add_SNo
x14
(
minus_SNo
x0
)
)
⟶
False
(proof)
Known
idl_negcycle_16
idl_negcycle_16
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNo
x30
⟶
SNo
x31
⟶
SNoLt
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
(
add_SNo
x29
(
add_SNo
x30
x31
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x16
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x17
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x18
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x19
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x20
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x21
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x22
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x23
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x24
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x25
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x26
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x27
⟶
SNoLe
(
add_SNo
x13
(
minus_SNo
x12
)
)
x28
⟶
SNoLe
(
add_SNo
x14
(
minus_SNo
x13
)
)
x29
⟶
SNoLe
(
add_SNo
x15
(
minus_SNo
x14
)
)
x30
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x15
)
)
x31
⟶
False
Known
SNo_add_SNo_16
SNo_add_SNo_16
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
x15
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Known
minus_add_SNo_distr_m_15
minus_add_SNo_distr_m_15
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
x15
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
minus_SNo
x15
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Theorem
cd63f..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNo
x30
⟶
SNo
x31
⟶
SNoLt
0
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
(
add_SNo
x29
(
add_SNo
x30
x31
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
⟶
SNoLe
x16
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
x17
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
x18
(
add_SNo
x2
(
minus_SNo
x3
)
)
⟶
SNoLe
x19
(
add_SNo
x3
(
minus_SNo
x4
)
)
⟶
SNoLe
x20
(
add_SNo
x4
(
minus_SNo
x5
)
)
⟶
SNoLe
x21
(
add_SNo
x5
(
minus_SNo
x6
)
)
⟶
SNoLe
x22
(
add_SNo
x6
(
minus_SNo
x7
)
)
⟶
SNoLe
x23
(
add_SNo
x7
(
minus_SNo
x8
)
)
⟶
SNoLe
x24
(
add_SNo
x8
(
minus_SNo
x9
)
)
⟶
SNoLe
x25
(
add_SNo
x9
(
minus_SNo
x10
)
)
⟶
SNoLe
x26
(
add_SNo
x10
(
minus_SNo
x11
)
)
⟶
SNoLe
x27
(
add_SNo
x11
(
minus_SNo
x12
)
)
⟶
SNoLe
x28
(
add_SNo
x12
(
minus_SNo
x13
)
)
⟶
SNoLe
x29
(
add_SNo
x13
(
minus_SNo
x14
)
)
⟶
SNoLe
x30
(
add_SNo
x14
(
minus_SNo
x15
)
)
⟶
SNoLe
x31
(
add_SNo
x15
(
minus_SNo
x0
)
)
⟶
False
(proof)