Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrNHZ..
/
cda27..
PUSSb..
/
a1ac2..
vout
PrNHZ..
/
68adc..
63.97 bars
TMTXj..
/
5d4a6..
ownership of
d3a12..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMUfw..
/
b033f..
ownership of
7e57a..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMd3k..
/
bb43a..
ownership of
fc55a..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMJUf..
/
a9041..
ownership of
6b0e7..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMLBM..
/
c39ac..
ownership of
b76bb..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMRxh..
/
7a7db..
ownership of
1d3e8..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMQLv..
/
3b2f7..
ownership of
f59cc..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMQUy..
/
ecdab..
ownership of
8e6d6..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMKg1..
/
41e0c..
ownership of
d72ac..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMdxW..
/
23013..
ownership of
b7a7a..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMFjd..
/
bc411..
ownership of
41d94..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMQD7..
/
24fad..
ownership of
5ae75..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMZwZ..
/
f2ff0..
ownership of
32b38..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMXE9..
/
84c42..
ownership of
19e8b..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMLtz..
/
f8c9e..
ownership of
ecc21..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMYn3..
/
87781..
ownership of
de6ec..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMRqT..
/
c4bef..
ownership of
e5597..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMawH..
/
10fca..
ownership of
63ea3..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMJ1D..
/
41373..
ownership of
f4be4..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMNqE..
/
2b405..
ownership of
6ca6c..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMFKR..
/
ef78b..
ownership of
d6948..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMWzG..
/
8928d..
ownership of
d3193..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMQ86..
/
3f765..
ownership of
70b59..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMNAX..
/
8b1d8..
ownership of
57dd5..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMRCq..
/
1862b..
ownership of
269f6..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMG1F..
/
7fa66..
ownership of
4f9ec..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMVhq..
/
10dfb..
ownership of
a130b..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMTQy..
/
caa08..
ownership of
b1ffb..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMM8S..
/
df7aa..
ownership of
92ff8..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMayh..
/
efaaf..
ownership of
920cc..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMVwK..
/
c455f..
ownership of
b1a0f..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMdhq..
/
24778..
ownership of
18b0b..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMFsm..
/
0b013..
ownership of
72f25..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMSBT..
/
84bf9..
ownership of
7c86a..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMFgR..
/
ad5d0..
ownership of
8de3f..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMXje..
/
84efc..
ownership of
19312..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMNAd..
/
c6730..
ownership of
0db16..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMVSV..
/
148ab..
ownership of
6b24c..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMR2J..
/
bbacb..
ownership of
27f55..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMKnv..
/
15edd..
ownership of
b78b5..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMS2d..
/
5efb9..
ownership of
a740e..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMXm1..
/
1d9f8..
ownership of
07aea..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMSfj..
/
1f247..
ownership of
7590f..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMKKQ..
/
3efe2..
ownership of
9d2e4..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMdsk..
/
8d349..
ownership of
eacc7..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMYor..
/
0fdb2..
ownership of
a7e8f..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMKN9..
/
3b029..
ownership of
dd28a..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMTAG..
/
1e02f..
ownership of
f4324..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMdJH..
/
ee764..
ownership of
d0861..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMNdN..
/
66e73..
ownership of
49873..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMYvK..
/
32d5b..
ownership of
3e2e1..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMdAd..
/
6c2b4..
ownership of
6a777..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMTWi..
/
e367e..
ownership of
f8fd5..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMckG..
/
7799a..
ownership of
c0587..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMK9S..
/
8219f..
ownership of
93e3e..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMNk1..
/
bedd6..
ownership of
2c4b1..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMarg..
/
8f008..
ownership of
51db6..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMMcB..
/
0ccfa..
ownership of
ef83a..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMHnb..
/
63053..
ownership of
df6a6..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMNC7..
/
d144f..
ownership of
8bff4..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMMJ4..
/
79af3..
ownership of
26e60..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMTUo..
/
351b5..
ownership of
7d655..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMKnr..
/
c8e2b..
ownership of
32dd4..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMHC6..
/
860cf..
ownership of
ac15b..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMbmz..
/
d80d3..
ownership of
e1e09..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMbfm..
/
4cc79..
ownership of
a3df1..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMbTJ..
/
077ec..
ownership of
24c85..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMbVx..
/
7949a..
ownership of
f0d56..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMMs5..
/
ba15a..
ownership of
be9c4..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMHdS..
/
6eaa6..
ownership of
ffc96..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMWPi..
/
a557d..
ownership of
57d22..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMPby..
/
d31a6..
ownership of
8d943..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMPh2..
/
5c610..
ownership of
539f9..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMTQW..
/
1058f..
ownership of
66ccf..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMWem..
/
0ef5c..
ownership of
88515..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMJpR..
/
9d4b9..
ownership of
2065c..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMLFF..
/
a40ff..
ownership of
f8553..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMPhG..
/
3f142..
ownership of
82d4b..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMGjB..
/
49556..
ownership of
ff755..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMQRA..
/
47be1..
ownership of
e063d..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMMgf..
/
3971f..
ownership of
da281..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMSKk..
/
9cc46..
ownership of
a6a6d..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMH77..
/
1c1bb..
ownership of
0af76..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMUYz..
/
aa070..
ownership of
076f3..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMHcJ..
/
0d4b0..
ownership of
f4d94..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMVRq..
/
7cfdb..
ownership of
6a5a4..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMNf5..
/
963ae..
ownership of
afcd2..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMZqW..
/
8c2fd..
ownership of
5f574..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMdos..
/
ce5bd..
ownership of
d4864..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMUrc..
/
abbfb..
ownership of
e2bf2..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMPGh..
/
db928..
ownership of
7c2d1..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMQJ4..
/
a2967..
ownership of
6ebcf..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMWb2..
/
f192a..
ownership of
d9a81..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMPFT..
/
885ca..
ownership of
dfa31..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
PUcEg..
/
df2bf..
doc published by
PrQUS..
Param
complex
complex
:
ι
Param
pair_tag
pair_tag
:
ι
→
ι
→
ι
→
ι
Param
CD_proj0
CD_proj0
:
ι
→
(
ι
→
ο
) →
ι
→
ι
Param
CD_proj1
CD_proj1
:
ι
→
(
ι
→
ο
) →
ι
→
ι
Definition
CD_conj
CD_conj
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 x3 :
ι → ι
.
λ x4 .
pair_tag
x0
(
x3
(
CD_proj0
x0
x1
x4
)
)
(
x2
(
CD_proj1
x0
x1
x4
)
)
Param
Sing
Sing
:
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
SNo
SNo
:
ι
→
ο
Param
minus_SNo
minus_SNo
:
ι
→
ι
Definition
conj_CSNo
conj_CSNo
:=
CD_conj
(
Sing
2
)
SNo
minus_SNo
(
λ x0 .
x0
)
Definition
CSNo_Im
CSNo_Im
:=
CD_proj1
(
Sing
2
)
SNo
Definition
CSNo_Re
CSNo_Re
:=
CD_proj0
(
Sing
2
)
SNo
Param
real
real
:
ι
Definition
SNo_pair
SNo_pair
:=
pair_tag
(
Sing
2
)
Known
complex_I
complex_I
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
SNo_pair
x0
x1
∈
complex
Known
complex_Re_real
complex_Re_real
:
∀ x0 .
x0
∈
complex
⟶
CSNo_Re
x0
∈
real
Known
real_minus_SNo
real_minus_SNo
:
∀ x0 .
x0
∈
real
⟶
minus_SNo
x0
∈
real
Known
complex_Im_real
complex_Im_real
:
∀ x0 .
x0
∈
complex
⟶
CSNo_Im
x0
∈
real
Theorem
complex_conj_CSNo
complex_conj_CSNo
:
∀ x0 .
x0
∈
complex
⟶
conj_CSNo
x0
∈
complex
(proof)
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Definition
CSNo_pair
CSNo_pair
:=
pair_tag
(
Sing
3
)
Param
ap
ap
:
ι
→
ι
→
ι
Definition
quaternion
quaternion
:=
{
CSNo_pair
(
ap
x0
0
)
(
ap
x0
1
)
|x0 ∈
setprod
complex
complex
}
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Theorem
quaternion_I
quaternion_I
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
CSNo_pair
x0
x1
∈
quaternion
(proof)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Theorem
quaternion_E
quaternion_E
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
complex
⟶
∀ x3 .
x3
∈
complex
⟶
x0
=
CSNo_pair
x2
x3
⟶
x1
)
⟶
x1
(proof)
Param
HSNo
HSNo
:
ι
→
ο
Param
CSNo
CSNo
:
ι
→
ο
Known
HSNo_I
HSNo_I
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
HSNo
(
CSNo_pair
x0
x1
)
Known
complex_CSNo
complex_CSNo
:
∀ x0 .
x0
∈
complex
⟶
CSNo
x0
Theorem
quaternion_HSNo
quaternion_HSNo
:
∀ x0 .
x0
∈
quaternion
⟶
HSNo
x0
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
CSNo_pair_0
CSNo_pair_0
:
∀ x0 .
CSNo_pair
x0
0
=
x0
Known
complex_0
complex_0
:
0
∈
complex
Theorem
complex_quaternion
complex_quaternion
:
complex
⊆
quaternion
(proof)
Theorem
quaternion_0
quaternion_0
:
0
∈
quaternion
(proof)
Known
complex_1
complex_1
:
1
∈
complex
Theorem
quaternion_1
quaternion_1
:
1
∈
quaternion
(proof)
Param
Complex_i
Complex_i
:
ι
Known
complex_i
complex_i
:
Complex_i
∈
complex
Theorem
quaternion_i
quaternion_i
:
Complex_i
∈
quaternion
(proof)
Definition
Quaternion_j
Quaternion_j
:=
CSNo_pair
0
1
Theorem
quaternion_j
quaternion_j
:
Quaternion_j
∈
quaternion
(proof)
Definition
Quaternion_k
Quaternion_k
:=
CSNo_pair
0
Complex_i
Theorem
quaternion_k
quaternion_k
:
Quaternion_k
∈
quaternion
(proof)
Definition
HSNo_proj0
HSNo_proj0
:=
CD_proj0
(
Sing
3
)
CSNo
Known
HSNo_proj0_2
HSNo_proj0_2
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
HSNo_proj0
(
CSNo_pair
x0
x1
)
=
x0
Theorem
quaternion_p0_eq
quaternion_p0_eq
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
HSNo_proj0
(
CSNo_pair
x0
x1
)
=
x0
(proof)
Definition
HSNo_proj1
HSNo_proj1
:=
CD_proj1
(
Sing
3
)
CSNo
Known
HSNo_proj1_2
HSNo_proj1_2
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
HSNo_proj1
(
CSNo_pair
x0
x1
)
=
x1
Theorem
quaternion_p1_eq
quaternion_p1_eq
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
HSNo_proj1
(
CSNo_pair
x0
x1
)
=
x1
(proof)
Theorem
quaternion_p0_complex
quaternion_p0_complex
:
∀ x0 .
x0
∈
quaternion
⟶
HSNo_proj0
x0
∈
complex
(proof)
Theorem
quaternion_p1_complex
quaternion_p1_complex
:
∀ x0 .
x0
∈
quaternion
⟶
HSNo_proj1
x0
∈
complex
(proof)
Known
HSNo_proj0proj1_split
HSNo_proj0proj1_split
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo_proj0
x0
=
HSNo_proj0
x1
⟶
HSNo_proj1
x0
=
HSNo_proj1
x1
⟶
x0
=
x1
Theorem
quaternion_proj0proj1_split
quaternion_proj0proj1_split
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 .
x1
∈
quaternion
⟶
HSNo_proj0
x0
=
HSNo_proj0
x1
⟶
HSNo_proj1
x0
=
HSNo_proj1
x1
⟶
x0
=
x1
(proof)
Definition
CD_minus
CD_minus
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 :
ι → ι
.
λ x3 .
pair_tag
x0
(
x2
(
CD_proj0
x0
x1
x3
)
)
(
x2
(
CD_proj1
x0
x1
x3
)
)
Param
minus_CSNo
minus_CSNo
:
ι
→
ι
Definition
minus_HSNo
minus_HSNo
:=
CD_minus
(
Sing
3
)
CSNo
minus_CSNo
Known
complex_minus_CSNo
complex_minus_CSNo
:
∀ x0 .
x0
∈
complex
⟶
minus_CSNo
x0
∈
complex
Theorem
quaternion_minus_HSNo
quaternion_minus_HSNo
:
∀ x0 .
x0
∈
quaternion
⟶
minus_HSNo
x0
∈
quaternion
(proof)
Definition
conj_HSNo
conj_HSNo
:=
CD_conj
(
Sing
3
)
CSNo
minus_CSNo
conj_CSNo
Theorem
quaternion_conj_HSNo
quaternion_conj_HSNo
:
∀ x0 .
x0
∈
quaternion
⟶
conj_HSNo
x0
∈
quaternion
(proof)
Definition
CD_add
CD_add
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 :
ι →
ι → ι
.
λ x3 x4 .
pair_tag
x0
(
x2
(
CD_proj0
x0
x1
x3
)
(
CD_proj0
x0
x1
x4
)
)
(
x2
(
CD_proj1
x0
x1
x3
)
(
CD_proj1
x0
x1
x4
)
)
Param
add_CSNo
add_CSNo
:
ι
→
ι
→
ι
Definition
add_HSNo
add_HSNo
:=
CD_add
(
Sing
3
)
CSNo
add_CSNo
Known
complex_add_CSNo
complex_add_CSNo
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
add_CSNo
x0
x1
∈
complex
Theorem
quaternion_add_HSNo
quaternion_add_HSNo
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 .
x1
∈
quaternion
⟶
add_HSNo
x0
x1
∈
quaternion
(proof)
Definition
CD_mul
CD_mul
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 x3 :
ι → ι
.
λ x4 x5 :
ι →
ι → ι
.
λ x6 x7 .
pair_tag
x0
(
x4
(
x5
(
CD_proj0
x0
x1
x6
)
(
CD_proj0
x0
x1
x7
)
)
(
x2
(
x5
(
x3
(
CD_proj1
x0
x1
x7
)
)
(
CD_proj1
x0
x1
x6
)
)
)
)
(
x4
(
x5
(
CD_proj1
x0
x1
x7
)
(
CD_proj0
x0
x1
x6
)
)
(
x5
(
CD_proj1
x0
x1
x6
)
(
x3
(
CD_proj0
x0
x1
x7
)
)
)
)
Param
mul_CSNo
mul_CSNo
:
ι
→
ι
→
ι
Definition
mul_HSNo
mul_HSNo
:=
CD_mul
(
Sing
3
)
CSNo
minus_CSNo
conj_CSNo
add_CSNo
mul_CSNo
Known
complex_mul_CSNo
complex_mul_CSNo
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
mul_CSNo
x0
x1
∈
complex
Theorem
quaternion_mul_HSNo
quaternion_mul_HSNo
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 .
x1
∈
quaternion
⟶
mul_HSNo
x0
x1
∈
quaternion
(proof)
Theorem
complex_p0_eq
complex_p0_eq
:
∀ x0 .
x0
∈
complex
⟶
HSNo_proj0
x0
=
x0
(proof)
Theorem
complex_p1_eq
complex_p1_eq
:
∀ x0 .
x0
∈
complex
⟶
HSNo_proj1
x0
=
0
(proof)
Definition
HSNo_pair
HSNo_pair
:=
pair_tag
(
Sing
4
)
Definition
octonion
octonion
:=
{
HSNo_pair
(
ap
x0
0
)
(
ap
x0
1
)
|x0 ∈
setprod
quaternion
quaternion
}
Theorem
octonion_I
octonion_I
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 .
x1
∈
quaternion
⟶
HSNo_pair
x0
x1
∈
octonion
(proof)
Theorem
octonion_E
octonion_E
:
∀ x0 .
x0
∈
octonion
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
quaternion
⟶
∀ x3 .
x3
∈
quaternion
⟶
x0
=
HSNo_pair
x2
x3
⟶
x1
)
⟶
x1
(proof)
Param
OSNo
OSNo
:
ι
→
ο
Known
OSNo_I
OSNo_I
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
OSNo
(
HSNo_pair
x0
x1
)
Theorem
octonion_OSNo
octonion_OSNo
:
∀ x0 .
x0
∈
octonion
⟶
OSNo
x0
(proof)
Known
HSNo_pair_0
HSNo_pair_0
:
∀ x0 .
HSNo_pair
x0
0
=
x0
Theorem
quaternion_octonion
quaternion_octonion
:
quaternion
⊆
octonion
(proof)
Theorem
octonion_0
octonion_0
:
0
∈
octonion
(proof)
Theorem
octonion_1
octonion_1
:
1
∈
octonion
(proof)
Theorem
octonion_i
octonion_i
:
Complex_i
∈
octonion
(proof)
Theorem
octonion_j
octonion_j
:
Quaternion_j
∈
octonion
(proof)
Theorem
octonion_k
octonion_k
:
Quaternion_k
∈
octonion
(proof)
Definition
Octonion_i0
Octonion_i0
:=
HSNo_pair
0
1
Theorem
octonion_i0
octonion_i0
:
Octonion_i0
∈
octonion
(proof)
Definition
Octonion_i3
Octonion_i3
:=
HSNo_pair
0
(
minus_HSNo
Complex_i
)
Theorem
octonion_i3
octonion_i3
:
Octonion_i3
∈
octonion
(proof)
Definition
Octonion_i5
Octonion_i5
:=
HSNo_pair
0
(
minus_HSNo
Quaternion_k
)
Theorem
octonion_i5
octonion_i5
:
Octonion_i5
∈
octonion
(proof)
Definition
Octonion_i6
Octonion_i6
:=
HSNo_pair
0
(
minus_HSNo
Quaternion_j
)
Theorem
octonion_i6
octonion_i6
:
Octonion_i6
∈
octonion
(proof)
Definition
OSNo_proj0
OSNo_proj0
:=
CD_proj0
(
Sing
4
)
HSNo
Known
OSNo_proj0_2
OSNo_proj0_2
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
OSNo_proj0
(
HSNo_pair
x0
x1
)
=
x0
Theorem
octonion_p0_eq
octonion_p0_eq
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 .
x1
∈
quaternion
⟶
OSNo_proj0
(
HSNo_pair
x0
x1
)
=
x0
(proof)
Definition
OSNo_proj1
OSNo_proj1
:=
CD_proj1
(
Sing
4
)
HSNo
Known
OSNo_proj1_2
OSNo_proj1_2
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
OSNo_proj1
(
HSNo_pair
x0
x1
)
=
x1
Theorem
octonion_p1_eq
octonion_p1_eq
:
∀ x0 .
x0
∈
quaternion
⟶
∀ x1 .
x1
∈
quaternion
⟶
OSNo_proj1
(
HSNo_pair
x0
x1
)
=
x1
(proof)
Theorem
octonion_p0_quaternion
octonion_p0_quaternion
:
∀ x0 .
x0
∈
octonion
⟶
OSNo_proj0
x0
∈
quaternion
(proof)
Theorem
octonion_p1_quaternion
octonion_p1_quaternion
:
∀ x0 .
x0
∈
octonion
⟶
OSNo_proj1
x0
∈
quaternion
(proof)
Known
OSNo_proj0proj1_split
OSNo_proj0proj1_split
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo_proj0
x0
=
OSNo_proj0
x1
⟶
OSNo_proj1
x0
=
OSNo_proj1
x1
⟶
x0
=
x1
Theorem
octonion_proj0proj1_split
octonion_proj0proj1_split
:
∀ x0 .
x0
∈
octonion
⟶
∀ x1 .
x1
∈
octonion
⟶
OSNo_proj0
x0
=
OSNo_proj0
x1
⟶
OSNo_proj1
x0
=
OSNo_proj1
x1
⟶
x0
=
x1
(proof)
Definition
minus_OSNo
minus_OSNo
:=
CD_minus
(
Sing
4
)
HSNo
minus_HSNo
Theorem
octonion_minus_OSNo
octonion_minus_OSNo
:
∀ x0 .
x0
∈
octonion
⟶
minus_OSNo
x0
∈
octonion
(proof)
Definition
conj_OSNo
conj_OSNo
:=
CD_conj
(
Sing
4
)
HSNo
minus_HSNo
conj_HSNo
Theorem
octonion_conj_OSNo
octonion_conj_OSNo
:
∀ x0 .
x0
∈
octonion
⟶
conj_OSNo
x0
∈
octonion
(proof)
Definition
add_OSNo
add_OSNo
:=
CD_add
(
Sing
4
)
HSNo
add_HSNo
Theorem
octonion_add_OSNo
octonion_add_OSNo
:
∀ x0 .
x0
∈
octonion
⟶
∀ x1 .
x1
∈
octonion
⟶
add_OSNo
x0
x1
∈
octonion
(proof)
Definition
mul_OSNo
mul_OSNo
:=
CD_mul
(
Sing
4
)
HSNo
minus_HSNo
conj_HSNo
add_HSNo
mul_HSNo
Theorem
octonion_mul_OSNo
octonion_mul_OSNo
:
∀ x0 .
x0
∈
octonion
⟶
∀ x1 .
x1
∈
octonion
⟶
mul_OSNo
x0
x1
∈
octonion
(proof)
Theorem
quaternion_p0_eq'
quaternion_p0_eq
:
∀ x0 .
x0
∈
quaternion
⟶
OSNo_proj0
x0
=
x0
(proof)
Theorem
quaternion_p1_eq'
quaternion_p1_eq
:
∀ x0 .
x0
∈
quaternion
⟶
OSNo_proj1
x0
=
0
(proof)