Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
657ff..
PUd2i..
/
438f9..
vout
PrCit..
/
57e42..
4.98 bars
TMQEp..
/
51675..
ownership of
1c7b4..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMTzz..
/
2c9f0..
ownership of
0397a..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUYvD..
/
2c9d7..
doc published by
Pr4zB..
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
u16
:=
ordsucc
u15
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Param
nat_p
nat_p
:
ι
→
ο
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_5
nat_5
:
nat_p
5
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
In_3_5
In_3_5
:
3
∈
5
Known
In_4_5
In_4_5
:
4
∈
5
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
neq_4_3
neq_4_3
:
u4
=
u3
⟶
∀ x0 : ο .
x0
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_11
nat_11
:
nat_p
11
Known
add_nat_com
add_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
add_nat
x1
x0
Known
nat_4
nat_4
:
nat_p
4
Known
62dd3..
:
add_nat
11
4
=
15
Known
nat_3
nat_3
:
nat_p
3
Known
336f0..
:
add_nat
11
3
=
14
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
neq_4_0
neq_4_0
:
u4
=
0
⟶
∀ x0 : ο .
x0
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Known
binintersectI
binintersectI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
x1
⟶
x2
∈
binintersect
x0
x1
Known
In_0_5
In_0_5
:
0
∈
5
Known
add_nat_0L
add_nat_0L
:
∀ x0 .
nat_p
x0
⟶
add_nat
0
x0
=
x0
Known
nat_12
nat_12
:
nat_p
12
Known
In_1_5
In_1_5
:
1
∈
5
Known
add_nat_SL
add_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
(
ordsucc
x0
)
x1
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_0
nat_0
:
nat_p
0
Known
In_2_5
In_2_5
:
2
∈
5
Known
nat_1
nat_1
:
nat_p
1
Known
nat_2
nat_2
:
nat_p
2
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
binintersectE
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
cases_9
cases_9
:
∀ x0 .
x0
∈
9
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
6
⟶
x1
7
⟶
x1
8
⟶
x1
x0
Theorem
1c7b4..
:
∀ x0 :
ι →
ι → ο
.
x0
0
u2
⟶
x0
u4
u6
⟶
x0
u1
u12
⟶
x0
u5
u12
⟶
x0
u8
u12
⟶
x0
u9
u12
⟶
x0
u3
u13
⟶
x0
u7
u13
⟶
x0
u10
u13
⟶
x0
u2
u14
⟶
x0
u6
u14
⟶
x0
u11
u14
⟶
x0
0
u15
⟶
x0
u4
u15
⟶
∀ x1 .
x1
⊆
u16
⟶
atleastp
u6
x1
⟶
u12
∈
x1
⟶
u13
∈
x1
⟶
u14
∈
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
not
(
x0
x2
x3
)
)
⟶
False
(proof)