Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr3ht..
/
aa779..
PUN89..
/
e3f65..
vout
Pr3ht..
/
01d76..
0.10 bars
TMbhi..
/
5e514..
ownership of
ba65a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXd5..
/
0f702..
ownership of
cb99c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNZs..
/
77686..
ownership of
7226f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMW7V..
/
b3aff..
ownership of
e1fb3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRz9..
/
25d5b..
ownership of
0bf6a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKn7..
/
8dee4..
ownership of
daccb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYZw..
/
6d59e..
ownership of
f4a0f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMThu..
/
6170f..
ownership of
3e7d9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMG3n..
/
8949b..
ownership of
93093..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWjb..
/
d2b5f..
ownership of
3e1da..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTRD..
/
2be72..
ownership of
548dc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNAV..
/
e205d..
ownership of
ce82a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLSt..
/
861b0..
ownership of
a4882..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbnr..
/
0d276..
ownership of
a599e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMY2D..
/
b22c9..
ownership of
b7718..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZgx..
/
b164d..
ownership of
26bb8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTkK..
/
2c1bf..
ownership of
47dd3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWKh..
/
cd824..
ownership of
8b5c1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKzQ..
/
0d93f..
ownership of
d6fdb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMajx..
/
e3c7b..
ownership of
5497c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYgb..
/
87fcc..
ownership of
969d1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMMf..
/
11ae5..
ownership of
63b3d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQUv..
/
34c1e..
ownership of
d8fab..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGa3..
/
64c7b..
ownership of
80549..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNny..
/
20bc5..
ownership of
ddf1b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQg3..
/
61500..
ownership of
aa4e0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUeo..
/
0998b..
ownership of
d1ee7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaRM..
/
2e035..
ownership of
2bfcd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbiL..
/
60ad7..
ownership of
64848..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNqA..
/
fc7e3..
ownership of
43d3b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbk8..
/
a6bf9..
ownership of
68f57..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZcD..
/
978d2..
ownership of
2cfcf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbwZ..
/
32180..
ownership of
8e4eb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc7F..
/
7fd5a..
ownership of
02d3a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMPg..
/
8f3a5..
ownership of
170ea..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcby..
/
a7744..
ownership of
97e4c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUNQ5..
/
878d5..
doc published by
PrCmT..
Known
df_trg__df_tdrg__df_tlm__df_tvc__df_ust__df_utop__df_uss__df_usp__df_tus__df_ucn__df_cfilu__df_cusp__df_xms__df_ms__df_tms__df_nm__df_ngp__df_tng
:
∀ x0 : ο .
(
wceq
ctrg
(
crab
(
λ x1 .
wcel
(
cfv
(
cv
x1
)
cmgp
)
ctmd
)
(
λ x1 .
cin
ctgp
crg
)
)
⟶
wceq
ctdrg
(
crab
(
λ x1 .
wcel
(
co
(
cfv
(
cv
x1
)
cmgp
)
(
cfv
(
cv
x1
)
cui
)
cress
)
ctgp
)
(
λ x1 .
cin
ctrg
cdr
)
)
⟶
wceq
ctlm
(
crab
(
λ x1 .
wa
(
wcel
(
cfv
(
cv
x1
)
csca
)
ctrg
)
(
wcel
(
cfv
(
cv
x1
)
cscaf
)
(
co
(
co
(
cfv
(
cfv
(
cv
x1
)
csca
)
ctopn
)
(
cfv
(
cv
x1
)
ctopn
)
ctx
)
(
cfv
(
cv
x1
)
ctopn
)
ccn
)
)
)
(
λ x1 .
cin
ctmd
clmod
)
)
⟶
wceq
ctvc
(
crab
(
λ x1 .
wcel
(
cfv
(
cv
x1
)
csca
)
ctdrg
)
(
λ x1 .
ctlm
)
)
⟶
wceq
cust
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cab
(
λ x2 .
w3a
(
wss
(
cv
x2
)
(
cpw
(
cxp
(
cv
x1
)
(
cv
x1
)
)
)
)
(
wcel
(
cxp
(
cv
x1
)
(
cv
x1
)
)
(
cv
x2
)
)
(
wral
(
λ x3 .
w3a
(
wral
(
λ x4 .
wss
(
cv
x3
)
(
cv
x4
)
⟶
wcel
(
cv
x4
)
(
cv
x2
)
)
(
λ x4 .
cpw
(
cxp
(
cv
x1
)
(
cv
x1
)
)
)
)
(
wral
(
λ x4 .
wcel
(
cin
(
cv
x3
)
(
cv
x4
)
)
(
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
w3a
(
wss
(
cres
cid
(
cv
x1
)
)
(
cv
x3
)
)
(
wcel
(
ccnv
(
cv
x3
)
)
(
cv
x2
)
)
(
wrex
(
λ x4 .
wss
(
ccom
(
cv
x4
)
(
cv
x4
)
)
(
cv
x3
)
)
(
λ x4 .
cv
x2
)
)
)
)
(
λ x3 .
cv
x2
)
)
)
)
)
⟶
wceq
cutop
(
cmpt
(
λ x1 .
cuni
(
crn
cust
)
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wss
(
cima
(
cv
x4
)
(
csn
(
cv
x3
)
)
)
(
cv
x2
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x2
)
)
(
λ x2 .
cpw
(
cdm
(
cuni
(
cv
x1
)
)
)
)
)
)
⟶
wceq
cuss
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cfv
(
cv
x1
)
cunif
)
(
cxp
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
)
crest
)
)
⟶
wceq
cusp
(
cab
(
λ x1 .
wa
(
wcel
(
cfv
(
cv
x1
)
cuss
)
(
cfv
(
cfv
(
cv
x1
)
cbs
)
cust
)
)
(
wceq
(
cfv
(
cv
x1
)
ctopn
)
(
cfv
(
cfv
(
cv
x1
)
cuss
)
cutop
)
)
)
)
⟶
wceq
ctus
(
cmpt
(
λ x1 .
cuni
(
crn
cust
)
)
(
λ x1 .
co
(
cpr
(
cop
(
cfv
cnx
cbs
)
(
cdm
(
cuni
(
cv
x1
)
)
)
)
(
cop
(
cfv
cnx
cunif
)
(
cv
x1
)
)
)
(
cop
(
cfv
cnx
cts
)
(
cfv
(
cv
x1
)
cutop
)
)
csts
)
)
⟶
wceq
cucn
(
cmpt2
(
λ x1 x2 .
cuni
(
crn
cust
)
)
(
λ x1 x2 .
cuni
(
crn
cust
)
)
(
λ x1 x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wrex
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wbr
(
cv
x6
)
(
cv
x7
)
(
cv
x5
)
⟶
wbr
(
cfv
(
cv
x6
)
(
cv
x3
)
)
(
cfv
(
cv
x7
)
(
cv
x3
)
)
(
cv
x4
)
)
(
λ x7 .
cdm
(
cuni
(
cv
x1
)
)
)
)
(
λ x6 .
cdm
(
cuni
(
cv
x1
)
)
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
co
(
cdm
(
cuni
(
cv
x2
)
)
)
(
cdm
(
cuni
(
cv
x1
)
)
)
cmap
)
)
)
⟶
wceq
ccfilu
(
cmpt
(
λ x1 .
cuni
(
crn
cust
)
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wss
(
cxp
(
cv
x4
)
(
cv
x4
)
)
(
cv
x3
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cfv
(
cdm
(
cuni
(
cv
x1
)
)
)
cfbas
)
)
)
⟶
wceq
ccusp
(
crab
(
λ x1 .
wral
(
λ x2 .
wcel
(
cv
x2
)
(
cfv
(
cfv
(
cv
x1
)
cuss
)
ccfilu
)
⟶
wne
(
co
(
cfv
(
cv
x1
)
ctopn
)
(
cv
x2
)
cflim
)
c0
)
(
λ x2 .
cfv
(
cfv
(
cv
x1
)
cbs
)
cfil
)
)
(
λ x1 .
cusp
)
)
⟶
wceq
cxme
(
crab
(
λ x1 .
wceq
(
cfv
(
cv
x1
)
ctopn
)
(
cfv
(
cres
(
cfv
(
cv
x1
)
cds
)
(
cxp
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
)
)
cmopn
)
)
(
λ x1 .
ctps
)
)
⟶
wceq
cmt
(
crab
(
λ x1 .
wcel
(
cres
(
cfv
(
cv
x1
)
cds
)
(
cxp
(
cfv
(
cv
x1
)
cbs
)
(
cfv
(
cv
x1
)
cbs
)
)
)
(
cfv
(
cfv
(
cv
x1
)
cbs
)
cme
)
)
(
λ x1 .
cxme
)
)
⟶
wceq
ctmt
(
cmpt
(
λ x1 .
cuni
(
crn
cxmt
)
)
(
λ x1 .
co
(
cpr
(
cop
(
cfv
cnx
cbs
)
(
cdm
(
cdm
(
cv
x1
)
)
)
)
(
cop
(
cfv
cnx
cds
)
(
cv
x1
)
)
)
(
cop
(
cfv
cnx
cts
)
(
cfv
(
cv
x1
)
cmopn
)
)
csts
)
)
⟶
wceq
cnm
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
co
(
cv
x2
)
(
cfv
(
cv
x1
)
c0g
)
(
cfv
(
cv
x1
)
cds
)
)
)
)
⟶
wceq
cngp
(
crab
(
λ x1 .
wss
(
ccom
(
cfv
(
cv
x1
)
cnm
)
(
cfv
(
cv
x1
)
csg
)
)
(
cfv
(
cv
x1
)
cds
)
)
(
λ x1 .
cin
cgrp
cmt
)
)
⟶
wceq
ctng
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
co
(
cv
x1
)
(
cop
(
cfv
cnx
cds
)
(
ccom
(
cv
x2
)
(
cfv
(
cv
x1
)
csg
)
)
)
csts
)
(
cop
(
cfv
cnx
cts
)
(
cfv
(
ccom
(
cv
x2
)
(
cfv
(
cv
x1
)
csg
)
)
cmopn
)
)
csts
)
)
⟶
x0
)
⟶
x0
Theorem
df_trg
:
wceq
ctrg
(
crab
(
λ x0 .
wcel
(
cfv
(
cv
x0
)
cmgp
)
ctmd
)
(
λ x0 .
cin
ctgp
crg
)
)
(proof)
Theorem
df_tdrg
:
wceq
ctdrg
(
crab
(
λ x0 .
wcel
(
co
(
cfv
(
cv
x0
)
cmgp
)
(
cfv
(
cv
x0
)
cui
)
cress
)
ctgp
)
(
λ x0 .
cin
ctrg
cdr
)
)
(proof)
Theorem
df_tlm
:
wceq
ctlm
(
crab
(
λ x0 .
wa
(
wcel
(
cfv
(
cv
x0
)
csca
)
ctrg
)
(
wcel
(
cfv
(
cv
x0
)
cscaf
)
(
co
(
co
(
cfv
(
cfv
(
cv
x0
)
csca
)
ctopn
)
(
cfv
(
cv
x0
)
ctopn
)
ctx
)
(
cfv
(
cv
x0
)
ctopn
)
ccn
)
)
)
(
λ x0 .
cin
ctmd
clmod
)
)
(proof)
Theorem
df_tvc
:
wceq
ctvc
(
crab
(
λ x0 .
wcel
(
cfv
(
cv
x0
)
csca
)
ctdrg
)
(
λ x0 .
ctlm
)
)
(proof)
Theorem
df_ust
:
wceq
cust
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cab
(
λ x1 .
w3a
(
wss
(
cv
x1
)
(
cpw
(
cxp
(
cv
x0
)
(
cv
x0
)
)
)
)
(
wcel
(
cxp
(
cv
x0
)
(
cv
x0
)
)
(
cv
x1
)
)
(
wral
(
λ x2 .
w3a
(
wral
(
λ x3 .
wss
(
cv
x2
)
(
cv
x3
)
⟶
wcel
(
cv
x3
)
(
cv
x1
)
)
(
λ x3 .
cpw
(
cxp
(
cv
x0
)
(
cv
x0
)
)
)
)
(
wral
(
λ x3 .
wcel
(
cin
(
cv
x2
)
(
cv
x3
)
)
(
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
w3a
(
wss
(
cres
cid
(
cv
x0
)
)
(
cv
x2
)
)
(
wcel
(
ccnv
(
cv
x2
)
)
(
cv
x1
)
)
(
wrex
(
λ x3 .
wss
(
ccom
(
cv
x3
)
(
cv
x3
)
)
(
cv
x2
)
)
(
λ x3 .
cv
x1
)
)
)
)
(
λ x2 .
cv
x1
)
)
)
)
)
(proof)
Theorem
df_utop
:
wceq
cutop
(
cmpt
(
λ x0 .
cuni
(
crn
cust
)
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wrex
(
λ x3 .
wss
(
cima
(
cv
x3
)
(
csn
(
cv
x2
)
)
)
(
cv
x1
)
)
(
λ x3 .
cv
x0
)
)
(
λ x2 .
cv
x1
)
)
(
λ x1 .
cpw
(
cdm
(
cuni
(
cv
x0
)
)
)
)
)
)
(proof)
Theorem
df_uss
:
wceq
cuss
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cfv
(
cv
x0
)
cunif
)
(
cxp
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
)
crest
)
)
(proof)
Theorem
df_usp
:
wceq
cusp
(
cab
(
λ x0 .
wa
(
wcel
(
cfv
(
cv
x0
)
cuss
)
(
cfv
(
cfv
(
cv
x0
)
cbs
)
cust
)
)
(
wceq
(
cfv
(
cv
x0
)
ctopn
)
(
cfv
(
cfv
(
cv
x0
)
cuss
)
cutop
)
)
)
)
(proof)
Theorem
df_tus
:
wceq
ctus
(
cmpt
(
λ x0 .
cuni
(
crn
cust
)
)
(
λ x0 .
co
(
cpr
(
cop
(
cfv
cnx
cbs
)
(
cdm
(
cuni
(
cv
x0
)
)
)
)
(
cop
(
cfv
cnx
cunif
)
(
cv
x0
)
)
)
(
cop
(
cfv
cnx
cts
)
(
cfv
(
cv
x0
)
cutop
)
)
csts
)
)
(proof)
Theorem
df_ucn
:
wceq
cucn
(
cmpt2
(
λ x0 x1 .
cuni
(
crn
cust
)
)
(
λ x0 x1 .
cuni
(
crn
cust
)
)
(
λ x0 x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wbr
(
cv
x5
)
(
cv
x6
)
(
cv
x4
)
⟶
wbr
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
cfv
(
cv
x6
)
(
cv
x2
)
)
(
cv
x3
)
)
(
λ x6 .
cdm
(
cuni
(
cv
x0
)
)
)
)
(
λ x5 .
cdm
(
cuni
(
cv
x0
)
)
)
)
(
λ x4 .
cv
x0
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
co
(
cdm
(
cuni
(
cv
x1
)
)
)
(
cdm
(
cuni
(
cv
x0
)
)
)
cmap
)
)
)
(proof)
Theorem
df_cfilu
:
wceq
ccfilu
(
cmpt
(
λ x0 .
cuni
(
crn
cust
)
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wrex
(
λ x3 .
wss
(
cxp
(
cv
x3
)
(
cv
x3
)
)
(
cv
x2
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x0
)
)
(
λ x1 .
cfv
(
cdm
(
cuni
(
cv
x0
)
)
)
cfbas
)
)
)
(proof)
Theorem
df_cusp
:
wceq
ccusp
(
crab
(
λ x0 .
wral
(
λ x1 .
wcel
(
cv
x1
)
(
cfv
(
cfv
(
cv
x0
)
cuss
)
ccfilu
)
⟶
wne
(
co
(
cfv
(
cv
x0
)
ctopn
)
(
cv
x1
)
cflim
)
c0
)
(
λ x1 .
cfv
(
cfv
(
cv
x0
)
cbs
)
cfil
)
)
(
λ x0 .
cusp
)
)
(proof)
Theorem
df_xms
:
wceq
cxme
(
crab
(
λ x0 .
wceq
(
cfv
(
cv
x0
)
ctopn
)
(
cfv
(
cres
(
cfv
(
cv
x0
)
cds
)
(
cxp
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
)
)
cmopn
)
)
(
λ x0 .
ctps
)
)
(proof)
Theorem
df_ms
:
wceq
cmt
(
crab
(
λ x0 .
wcel
(
cres
(
cfv
(
cv
x0
)
cds
)
(
cxp
(
cfv
(
cv
x0
)
cbs
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(
cfv
(
cfv
(
cv
x0
)
cbs
)
cme
)
)
(
λ x0 .
cxme
)
)
(proof)
Theorem
df_tms
:
wceq
ctmt
(
cmpt
(
λ x0 .
cuni
(
crn
cxmt
)
)
(
λ x0 .
co
(
cpr
(
cop
(
cfv
cnx
cbs
)
(
cdm
(
cdm
(
cv
x0
)
)
)
)
(
cop
(
cfv
cnx
cds
)
(
cv
x0
)
)
)
(
cop
(
cfv
cnx
cts
)
(
cfv
(
cv
x0
)
cmopn
)
)
csts
)
)
(proof)
Theorem
df_nm
:
wceq
cnm
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
co
(
cv
x1
)
(
cfv
(
cv
x0
)
c0g
)
(
cfv
(
cv
x0
)
cds
)
)
)
)
(proof)
Theorem
df_ngp
:
wceq
cngp
(
crab
(
λ x0 .
wss
(
ccom
(
cfv
(
cv
x0
)
cnm
)
(
cfv
(
cv
x0
)
csg
)
)
(
cfv
(
cv
x0
)
cds
)
)
(
λ x0 .
cin
cgrp
cmt
)
)
(proof)
Theorem
df_tng
:
wceq
ctng
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
co
(
cv
x0
)
(
cop
(
cfv
cnx
cds
)
(
ccom
(
cv
x1
)
(
cfv
(
cv
x0
)
csg
)
)
)
csts
)
(
cop
(
cfv
cnx
cts
)
(
cfv
(
ccom
(
cv
x1
)
(
cfv
(
cv
x0
)
csg
)
)
cmopn
)
)
csts
)
)
(proof)