Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
60e44..
PUa62..
/
7953d..
vout
PrCit..
/
83b1c..
4.86 bars
TMLDS..
/
32ad0..
ownership of
01145..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJei..
/
2a8fe..
ownership of
6e747..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMZx9..
/
69edb..
ownership of
f2c34..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGzE..
/
ae82a..
ownership of
ac526..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJYD..
/
5eb74..
ownership of
ef8a4..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcXg..
/
d7c0a..
ownership of
c22d5..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMVL8..
/
e3d8d..
ownership of
36aae..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMdeD..
/
02b81..
ownership of
eb891..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMS6T..
/
d6c5f..
ownership of
50c64..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TML2Z..
/
1fe46..
ownership of
aaaae..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMF6R..
/
e6788..
ownership of
65c75..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLwD..
/
897ff..
ownership of
5458e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUPqq..
/
bf9ab..
doc published by
Pr4zB..
Definition
Church17_p
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x7
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x8
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x9
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x10
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x11
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x12
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x13
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x14
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x15
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x16
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x17
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x18
)
⟶
x1
x0
Definition
TwoRamseyGraph_3_6_Church17
:=
λ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x3
)
(
x1
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x3
x3
)
(
x1
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x3
x2
x3
x3
)
(
x1
x3
x2
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x2
x2
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
)
(
x1
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x2
x3
x2
x2
x2
x3
x3
x3
x3
x3
x2
x3
x3
)
(
x1
x2
x3
x3
x3
x3
x2
x2
x2
x3
x2
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x2
x2
x2
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x2
x2
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
x2
x2
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x2
x3
x3
x2
x3
x3
x3
x2
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x2
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x3
x2
x3
x2
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x2
)
(
x1
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x2
x2
)
Theorem
65c75..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
TwoRamseyGraph_3_6_Church17
x0
x0
=
λ x2 x3 .
x2
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Param
u17_to_Church17
:
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
Definition
TwoRamseyGraph_3_6_17
:=
λ x0 x1 .
x0
∈
u17
⟶
x1
∈
u17
⟶
TwoRamseyGraph_3_6_Church17
(
u17_to_Church17
x0
)
(
u17_to_Church17
x1
)
=
λ x3 x4 .
x3
Param
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
:
ι
→
ι
Known
660da..
:
∀ x0 .
x0
∈
u16
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
x0
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Known
b0ce1..
:
u17_to_Church17
u1
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x2
Known
c5926..
:
u17_to_Church17
0
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x1
Known
cases_2
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Known
e8ec5..
:
u17_to_Church17
u2
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x3
Known
00076..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u2
=
0
Known
6eb3e..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u1
=
u3
Known
1ef08..
:
u17_to_Church17
u3
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x4
Known
c5b55..
:
0
∈
u17
Known
35c0a..
:
u3
∈
u17
Known
cases_3
cases_3
:
∀ x0 .
x0
∈
3
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
x0
Known
737c8..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u3
=
u2
Known
428fd..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
0
=
u1
Known
9502b..
:
u2
∈
u17
Known
f6e42..
:
u1
∈
u17
Known
cases_4
cases_4
:
∀ x0 .
x0
∈
4
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
x0
Known
b5b60..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u4
=
u5
Known
22977..
:
u17_to_Church17
u5
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x6
Known
79c48..
:
u5
∈
u17
Known
05513..
:
u17_to_Church17
u4
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x5
Known
cases_5
cases_5
:
∀ x0 .
x0
∈
5
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
x0
Known
d3a23..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u5
=
u7
Known
b0f83..
:
u17_to_Church17
u7
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x8
Known
51ef0..
:
u7
∈
u17
Known
cases_6
cases_6
:
∀ x0 .
x0
∈
6
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
x0
Known
9e037..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u6
=
u4
Known
793dd..
:
u4
∈
u17
Known
0e32a..
:
u17_to_Church17
u6
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x7
Known
cases_7
cases_7
:
∀ x0 .
x0
∈
7
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
6
⟶
x1
x0
Known
af667..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u7
=
u6
Known
b3205..
:
u6
∈
u17
Known
cases_8
cases_8
:
∀ x0 .
x0
∈
8
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
6
⟶
x1
7
⟶
x1
x0
Known
86df1..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u8
=
u10
Known
d7087..
:
u17_to_Church17
u10
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x11
Known
e886d..
:
u10
∈
u17
Known
48ba7..
:
u17_to_Church17
u8
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x9
Known
cases_9
cases_9
:
∀ x0 .
x0
∈
9
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
6
⟶
x1
7
⟶
x1
8
⟶
x1
x0
Known
1f384..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u9
=
u8
Known
6a4e9..
:
u8
∈
u17
Known
a3fb1..
:
u17_to_Church17
u9
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x10
Known
44418..
:
∀ x0 .
x0
∈
u10
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
x0
Known
f964e..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u10
=
u11
Known
a87a3..
:
u17_to_Church17
u11
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x12
Known
e57ea..
:
u11
∈
u17
Known
83484..
:
∀ x0 .
x0
∈
u11
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
x0
Known
1f07b..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u11
=
u9
Known
fd1a6..
:
u9
∈
u17
Known
866c8..
:
∀ x0 .
x0
∈
u12
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
x0
Known
be3a6..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u12
=
u13
Known
0975c..
:
u17_to_Church17
u13
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x14
Known
7315d..
:
u13
∈
u17
Known
a52d8..
:
u17_to_Church17
u12
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x13
Known
6de8d..
:
∀ x0 .
x0
∈
u13
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
x0
Known
0e84a..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u13
=
u14
Known
cf897..
:
u17_to_Church17
u14
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x15
Known
35e01..
:
u14
∈
u17
Known
dca77..
:
∀ x0 .
x0
∈
u14
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
x0
Known
4b6e2..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u14
=
u15
Known
c424d..
:
u17_to_Church17
u15
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x16
Known
31b8d..
:
u15
∈
u17
Known
f3498..
:
∀ x0 .
x0
∈
u15
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
x0
Known
5681c..
:
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u15
=
u12
Known
a1a10..
:
u12
∈
u17
Known
768c1..
:
(
(
λ x1 x2 .
x2
)
=
λ x1 x2 .
x1
)
⟶
∀ x0 : ο .
x0
Theorem
50c64..
:
∀ x0 .
x0
∈
u16
⟶
∀ x1 .
x1
∈
x0
⟶
TwoRamseyGraph_3_6_17
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
)
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x1
)
⟶
TwoRamseyGraph_3_6_17
x0
x1
(proof)
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_16
nat_16
:
nat_p
16
Known
72dc0..
:
∀ x0 x1 .
TwoRamseyGraph_3_6_17
x0
x1
⟶
TwoRamseyGraph_3_6_17
x1
x0
Known
db165..
:
∀ x0 .
x0
∈
u17
⟶
Church17_p
(
u17_to_Church17
x0
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
36aae..
:
∀ x0 .
x0
∈
u16
⟶
∀ x1 .
x1
∈
u16
⟶
TwoRamseyGraph_3_6_17
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
)
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x1
)
⟶
TwoRamseyGraph_3_6_17
x0
x1
(proof)
Known
neq_3_1
neq_3_1
:
u3
=
u1
⟶
∀ x0 : ο .
x0
Known
neq_1_0
neq_1_0
:
u1
=
0
⟶
∀ x0 : ο .
x0
Known
neq_3_0
neq_3_0
:
u3
=
0
⟶
∀ x0 : ο .
x0
Known
neq_2_1
neq_2_1
:
u2
=
u1
⟶
∀ x0 : ο .
x0
Known
neq_3_2
neq_3_2
:
u3
=
u2
⟶
∀ x0 : ο .
x0
Known
neq_2_0
neq_2_0
:
u2
=
0
⟶
∀ x0 : ο .
x0
Known
neq_5_1
neq_5_1
:
u5
=
u1
⟶
∀ x0 : ο .
x0
Known
neq_5_3
neq_5_3
:
u5
=
u3
⟶
∀ x0 : ο .
x0
Known
neq_5_0
neq_5_0
:
u5
=
0
⟶
∀ x0 : ο .
x0
Known
neq_5_2
neq_5_2
:
u5
=
u2
⟶
∀ x0 : ο .
x0
Known
neq_7_1
neq_7_1
:
u7
=
u1
⟶
∀ x0 : ο .
x0
Known
neq_7_3
neq_7_3
:
u7
=
u3
⟶
∀ x0 : ο .
x0
Known
neq_7_0
neq_7_0
:
u7
=
0
⟶
∀ x0 : ο .
x0
Known
neq_7_2
neq_7_2
:
u7
=
u2
⟶
∀ x0 : ο .
x0
Known
neq_7_5
neq_7_5
:
u7
=
u5
⟶
∀ x0 : ο .
x0
Known
neq_4_1
neq_4_1
:
u4
=
u1
⟶
∀ x0 : ο .
x0
Known
neq_4_3
neq_4_3
:
u4
=
u3
⟶
∀ x0 : ο .
x0
Known
neq_4_0
neq_4_0
:
u4
=
0
⟶
∀ x0 : ο .
x0
Known
neq_4_2
neq_4_2
:
u4
=
u2
⟶
∀ x0 : ο .
x0
Known
neq_5_4
neq_5_4
:
u5
=
u4
⟶
∀ x0 : ο .
x0
Known
neq_7_4
neq_7_4
:
u7
=
u4
⟶
∀ x0 : ο .
x0
Known
neq_6_1
neq_6_1
:
u6
=
u1
⟶
∀ x0 : ο .
x0
Known
neq_6_3
neq_6_3
:
u6
=
u3
⟶
∀ x0 : ο .
x0
Known
neq_6_0
neq_6_0
:
u6
=
0
⟶
∀ x0 : ο .
x0
Known
neq_6_2
neq_6_2
:
u6
=
u2
⟶
∀ x0 : ο .
x0
Known
neq_6_5
neq_6_5
:
u6
=
u5
⟶
∀ x0 : ο .
x0
Known
neq_7_6
neq_7_6
:
u7
=
u6
⟶
∀ x0 : ο .
x0
Known
neq_6_4
neq_6_4
:
u6
=
u4
⟶
∀ x0 : ο .
x0
Known
d183f..
:
u10
=
u1
⟶
∀ x0 : ο .
x0
Known
68152..
:
u10
=
u3
⟶
∀ x0 : ο .
x0
Known
0e10e..
:
u10
=
0
⟶
∀ x0 : ο .
x0
Known
e02d9..
:
u10
=
u2
⟶
∀ x0 : ο .
x0
Known
a7d50..
:
u10
=
u5
⟶
∀ x0 : ο .
x0
Known
7d7a8..
:
u10
=
u7
⟶
∀ x0 : ο .
x0
Known
33d16..
:
u10
=
u4
⟶
∀ x0 : ο .
x0
Known
d0401..
:
u10
=
u6
⟶
∀ x0 : ο .
x0
Known
neq_8_1
neq_8_1
:
u8
=
u1
⟶
∀ x0 : ο .
x0
Known
neq_8_3
neq_8_3
:
u8
=
u3
⟶
∀ x0 : ο .
x0
Known
neq_8_0
neq_8_0
:
u8
=
0
⟶
∀ x0 : ο .
x0
Known
neq_8_2
neq_8_2
:
u8
=
u2
⟶
∀ x0 : ο .
x0
Known
neq_8_5
neq_8_5
:
u8
=
u5
⟶
∀ x0 : ο .
x0
Known
neq_8_7
neq_8_7
:
u8
=
u7
⟶
∀ x0 : ο .
x0
Known
neq_8_4
neq_8_4
:
u8
=
u4
⟶
∀ x0 : ο .
x0
Known
neq_8_6
neq_8_6
:
u8
=
u6
⟶
∀ x0 : ο .
x0
Known
96175..
:
u10
=
u8
⟶
∀ x0 : ο .
x0
Known
618f7..
:
u11
=
u1
⟶
∀ x0 : ο .
x0
Known
b06e1..
:
u11
=
u3
⟶
∀ x0 : ο .
x0
Known
19f75..
:
u11
=
0
⟶
∀ x0 : ο .
x0
Known
2c42c..
:
u11
=
u2
⟶
∀ x0 : ο .
x0
Known
1b659..
:
u11
=
u5
⟶
∀ x0 : ο .
x0
Known
4abfa..
:
u11
=
u7
⟶
∀ x0 : ο .
x0
Known
6a6f1..
:
u11
=
u4
⟶
∀ x0 : ο .
x0
Known
949f2..
:
u11
=
u6
⟶
∀ x0 : ο .
x0
Known
ebfb7..
:
u11
=
u10
⟶
∀ x0 : ο .
x0
Known
b3a20..
:
u11
=
u8
⟶
∀ x0 : ο .
x0
Known
neq_9_1
neq_9_1
:
u9
=
u1
⟶
∀ x0 : ο .
x0
Known
neq_9_3
neq_9_3
:
u9
=
u3
⟶
∀ x0 : ο .
x0
Known
neq_9_0
neq_9_0
:
u9
=
0
⟶
∀ x0 : ο .
x0
Known
neq_9_2
neq_9_2
:
u9
=
u2
⟶
∀ x0 : ο .
x0
Known
neq_9_5
neq_9_5
:
u9
=
u5
⟶
∀ x0 : ο .
x0
Known
neq_9_7
neq_9_7
:
u9
=
u7
⟶
∀ x0 : ο .
x0
Known
neq_9_4
neq_9_4
:
u9
=
u4
⟶
∀ x0 : ο .
x0
Known
neq_9_6
neq_9_6
:
u9
=
u6
⟶
∀ x0 : ο .
x0
Known
4fc31..
:
u10
=
u9
⟶
∀ x0 : ο .
x0
Known
neq_9_8
neq_9_8
:
u9
=
u8
⟶
∀ x0 : ο .
x0
Known
4f03f..
:
u11
=
u9
⟶
∀ x0 : ο .
x0
Known
16246..
:
u13
=
u1
⟶
∀ x0 : ο .
x0
Known
19222..
:
u13
=
u3
⟶
∀ x0 : ο .
x0
Known
733b2..
:
u13
=
0
⟶
∀ x0 : ο .
x0
Known
40d25..
:
u13
=
u2
⟶
∀ x0 : ο .
x0
Known
29333..
:
u13
=
u5
⟶
∀ x0 : ο .
x0
Known
d9b35..
:
u13
=
u7
⟶
∀ x0 : ο .
x0
Known
4d850..
:
u13
=
u4
⟶
∀ x0 : ο .
x0
Known
02f5c..
:
u13
=
u6
⟶
∀ x0 : ο .
x0
Known
78358..
:
u13
=
u10
⟶
∀ x0 : ο .
x0
Known
0b225..
:
u13
=
u8
⟶
∀ x0 : ο .
x0
Known
bf497..
:
u13
=
u11
⟶
∀ x0 : ο .
x0
Known
3f24c..
:
u13
=
u9
⟶
∀ x0 : ο .
x0
Known
ac679..
:
u14
=
u1
⟶
∀ x0 : ο .
x0
Known
d0fe4..
:
u14
=
u3
⟶
∀ x0 : ο .
x0
Known
fc551..
:
u14
=
0
⟶
∀ x0 : ο .
x0
Known
0bb18..
:
u14
=
u2
⟶
∀ x0 : ο .
x0
Known
d6c57..
:
u14
=
u5
⟶
∀ x0 : ο .
x0
Known
01bf6..
:
u14
=
u7
⟶
∀ x0 : ο .
x0
Known
ffd62..
:
u14
=
u4
⟶
∀ x0 : ο .
x0
Known
62d80..
:
u14
=
u6
⟶
∀ x0 : ο .
x0
Known
f5ab5..
:
u14
=
u10
⟶
∀ x0 : ο .
x0
Known
4f6ad..
:
u14
=
u8
⟶
∀ x0 : ο .
x0
Known
4e1aa..
:
u14
=
u11
⟶
∀ x0 : ο .
x0
Known
d7730..
:
u14
=
u9
⟶
∀ x0 : ο .
x0
Known
e1947..
:
u14
=
u13
⟶
∀ x0 : ο .
x0
Known
174d1..
:
u15
=
u1
⟶
∀ x0 : ο .
x0
Known
70124..
:
u15
=
u3
⟶
∀ x0 : ο .
x0
Known
160ad..
:
u15
=
0
⟶
∀ x0 : ο .
x0
Known
4d715..
:
u15
=
u2
⟶
∀ x0 : ο .
x0
Known
24fad..
:
u15
=
u5
⟶
∀ x0 : ο .
x0
Known
008b1..
:
u15
=
u7
⟶
∀ x0 : ο .
x0
Known
4b742..
:
u15
=
u4
⟶
∀ x0 : ο .
x0
Known
f5ac7..
:
u15
=
u6
⟶
∀ x0 : ο .
x0
Known
b7f53..
:
u15
=
u10
⟶
∀ x0 : ο .
x0
Known
c0d75..
:
u15
=
u8
⟶
∀ x0 : ο .
x0
Known
9c5db..
:
u15
=
u11
⟶
∀ x0 : ο .
x0
Known
3a7bc..
:
u15
=
u9
⟶
∀ x0 : ο .
x0
Known
4d8d4..
:
u15
=
u13
⟶
∀ x0 : ο .
x0
Known
b8e82..
:
u15
=
u14
⟶
∀ x0 : ο .
x0
Known
ce0cd..
:
u12
=
u1
⟶
∀ x0 : ο .
x0
Known
e015c..
:
u12
=
u3
⟶
∀ x0 : ο .
x0
Known
efdfc..
:
u12
=
0
⟶
∀ x0 : ο .
x0
Known
8158b..
:
u12
=
u2
⟶
∀ x0 : ο .
x0
Known
07eba..
:
u12
=
u5
⟶
∀ x0 : ο .
x0
Known
6a15f..
:
u12
=
u7
⟶
∀ x0 : ο .
x0
Known
7aa79..
:
u12
=
u4
⟶
∀ x0 : ο .
x0
Known
0bd83..
:
u12
=
u6
⟶
∀ x0 : ο .
x0
Known
6c583..
:
u12
=
u10
⟶
∀ x0 : ο .
x0
Known
a6a6c..
:
u12
=
u8
⟶
∀ x0 : ο .
x0
Known
ab306..
:
u12
=
u11
⟶
∀ x0 : ο .
x0
Known
22885..
:
u12
=
u9
⟶
∀ x0 : ο .
x0
Known
ad02f..
:
u13
=
u12
⟶
∀ x0 : ο .
x0
Known
ef4da..
:
u14
=
u12
⟶
∀ x0 : ο .
x0
Known
72647..
:
u15
=
u12
⟶
∀ x0 : ο .
x0
Theorem
ef8a4..
:
∀ x0 .
x0
∈
u16
⟶
∀ x1 .
x1
∈
x0
⟶
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
=
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
f2c34..
:
∀ x0 .
x0
∈
u16
⟶
∀ x1 .
x1
∈
u16
⟶
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
=
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x1
⟶
x0
=
x1
(proof)
Theorem
01145..
:
∀ x0 .
x0
∈
u16
⟶
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x0
)
)
)
=
x0
(proof)