Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../60e44..
PUa62../7953d..
vout
PrCit../83b1c.. 4.86 bars
TMLDS../32ad0.. ownership of 01145.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJei../2a8fe.. ownership of 6e747.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZx9../69edb.. ownership of f2c34.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGzE../ae82a.. ownership of ac526.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJYD../5eb74.. ownership of ef8a4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcXg../d7c0a.. ownership of c22d5.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVL8../e3d8d.. ownership of 36aae.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdeD../02b81.. ownership of eb891.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMS6T../d6c5f.. ownership of 50c64.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TML2Z../1fe46.. ownership of aaaae.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMF6R../e6788.. ownership of 65c75.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLwD../897ff.. ownership of 5458e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUPqq../bf9ab.. doc published by Pr4zB..
Definition Church17_p := λ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x2)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x3)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x4)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x5)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x6)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x7)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x8)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x9)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x10)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x11)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x12)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x13)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x14)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x15)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x16)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x17)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x18)x1 x0
Definition TwoRamseyGraph_3_6_Church17 := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . λ x2 x3 . x0 (x1 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x3 x3) (x1 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3 x3) (x1 x3 x2 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x2 x2 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x2 x3 x2 x2 x2 x3 x3 x3 x3 x3 x2 x3 x3) (x1 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x2 x3 x3 x2 x2 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x2 x2 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x2 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x2) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x2) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x2) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x2 x2) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x2)
Theorem 65c75.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church17_p x0TwoRamseyGraph_3_6_Church17 x0 x0 = λ x2 x3 . x2 (proof)
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Definition u13 := ordsucc u12
Definition u14 := ordsucc u13
Definition u15 := ordsucc u14
Definition u16 := ordsucc u15
Definition u17 := ordsucc u16
Param u17_to_Church17 : ιιιιιιιιιιιιιιιιιιι
Definition TwoRamseyGraph_3_6_17 := λ x0 x1 . x0u17x1u17TwoRamseyGraph_3_6_Church17 (u17_to_Church17 x0) (u17_to_Church17 x1) = λ x3 x4 . x3
Param u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 : ιι
Known 660da.. : ∀ x0 . x0u16∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 u6x1 u7x1 u8x1 u9x1 u10x1 u11x1 u12x1 u13x1 u14x1 u15x1 x0
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known b0ce1.. : u17_to_Church17 u1 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x2
Known c5926.. : u17_to_Church17 0 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x1
Known cases_2cases_2 : ∀ x0 . x02∀ x1 : ι → ο . x1 0x1 1x1 x0
Known e8ec5.. : u17_to_Church17 u2 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x3
Known 00076.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u2 = 0
Known 6eb3e.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u1 = u3
Known 1ef08.. : u17_to_Church17 u3 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x4
Known c5b55.. : 0u17
Known 35c0a.. : u3u17
Known cases_3cases_3 : ∀ x0 . x03∀ x1 : ι → ο . x1 0x1 1x1 2x1 x0
Known 737c8.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u3 = u2
Known 428fd.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 0 = u1
Known 9502b.. : u2u17
Known f6e42.. : u1u17
Known cases_4cases_4 : ∀ x0 . x04∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 x0
Known b5b60.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u4 = u5
Known 22977.. : u17_to_Church17 u5 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x6
Known 79c48.. : u5u17
Known 05513.. : u17_to_Church17 u4 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x5
Known cases_5cases_5 : ∀ x0 . x05∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 x0
Known d3a23.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u5 = u7
Known b0f83.. : u17_to_Church17 u7 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x8
Known 51ef0.. : u7u17
Known cases_6cases_6 : ∀ x0 . x06∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 x0
Known 9e037.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u6 = u4
Known 793dd.. : u4u17
Known 0e32a.. : u17_to_Church17 u6 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x7
Known cases_7cases_7 : ∀ x0 . x07∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 6x1 x0
Known af667.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u7 = u6
Known b3205.. : u6u17
Known cases_8cases_8 : ∀ x0 . x08∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 6x1 7x1 x0
Known 86df1.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u8 = u10
Known d7087.. : u17_to_Church17 u10 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x11
Known e886d.. : u10u17
Known 48ba7.. : u17_to_Church17 u8 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x9
Known cases_9cases_9 : ∀ x0 . x09∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 6x1 7x1 8x1 x0
Known 1f384.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u9 = u8
Known 6a4e9.. : u8u17
Known a3fb1.. : u17_to_Church17 u9 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x10
Known 44418.. : ∀ x0 . x0u10∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 u6x1 u7x1 u8x1 u9x1 x0
Known f964e.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u10 = u11
Known a87a3.. : u17_to_Church17 u11 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x12
Known e57ea.. : u11u17
Known 83484.. : ∀ x0 . x0u11∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 u6x1 u7x1 u8x1 u9x1 u10x1 x0
Known 1f07b.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u11 = u9
Known fd1a6.. : u9u17
Known 866c8.. : ∀ x0 . x0u12∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 u6x1 u7x1 u8x1 u9x1 u10x1 u11x1 x0
Known be3a6.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u12 = u13
Known 0975c.. : u17_to_Church17 u13 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x14
Known 7315d.. : u13u17
Known a52d8.. : u17_to_Church17 u12 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x13
Known 6de8d.. : ∀ x0 . x0u13∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 u6x1 u7x1 u8x1 u9x1 u10x1 u11x1 u12x1 x0
Known 0e84a.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u13 = u14
Known cf897.. : u17_to_Church17 u14 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x15
Known 35e01.. : u14u17
Known dca77.. : ∀ x0 . x0u14∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 u6x1 u7x1 u8x1 u9x1 u10x1 u11x1 u12x1 u13x1 x0
Known 4b6e2.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u14 = u15
Known c424d.. : u17_to_Church17 u15 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x16
Known 31b8d.. : u15u17
Known f3498.. : ∀ x0 . x0u15∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 u6x1 u7x1 u8x1 u9x1 u10x1 u11x1 u12x1 u13x1 u14x1 x0
Known 5681c.. : u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 u15 = u12
Known a1a10.. : u12u17
Known 768c1.. : ((λ x1 x2 . x2) = λ x1 x2 . x1)∀ x0 : ο . x0
Theorem 50c64.. : ∀ x0 . x0u16∀ x1 . x1x0TwoRamseyGraph_3_6_17 (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0) (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x1)TwoRamseyGraph_3_6_17 x0 x1 (proof)
Param ordinalordinal : ιο
Known ordinal_trichotomy_or_impredordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2
Param nat_pnat_p : ιο
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Known nat_16nat_16 : nat_p 16
Known 72dc0.. : ∀ x0 x1 . TwoRamseyGraph_3_6_17 x0 x1TwoRamseyGraph_3_6_17 x1 x0
Known db165.. : ∀ x0 . x0u17Church17_p (u17_to_Church17 x0)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Theorem 36aae.. : ∀ x0 . x0u16∀ x1 . x1u16TwoRamseyGraph_3_6_17 (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0) (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x1)TwoRamseyGraph_3_6_17 x0 x1 (proof)
Known neq_3_1neq_3_1 : u3 = u1∀ x0 : ο . x0
Known neq_1_0neq_1_0 : u1 = 0∀ x0 : ο . x0
Known neq_3_0neq_3_0 : u3 = 0∀ x0 : ο . x0
Known neq_2_1neq_2_1 : u2 = u1∀ x0 : ο . x0
Known neq_3_2neq_3_2 : u3 = u2∀ x0 : ο . x0
Known neq_2_0neq_2_0 : u2 = 0∀ x0 : ο . x0
Known neq_5_1neq_5_1 : u5 = u1∀ x0 : ο . x0
Known neq_5_3neq_5_3 : u5 = u3∀ x0 : ο . x0
Known neq_5_0neq_5_0 : u5 = 0∀ x0 : ο . x0
Known neq_5_2neq_5_2 : u5 = u2∀ x0 : ο . x0
Known neq_7_1neq_7_1 : u7 = u1∀ x0 : ο . x0
Known neq_7_3neq_7_3 : u7 = u3∀ x0 : ο . x0
Known neq_7_0neq_7_0 : u7 = 0∀ x0 : ο . x0
Known neq_7_2neq_7_2 : u7 = u2∀ x0 : ο . x0
Known neq_7_5neq_7_5 : u7 = u5∀ x0 : ο . x0
Known neq_4_1neq_4_1 : u4 = u1∀ x0 : ο . x0
Known neq_4_3neq_4_3 : u4 = u3∀ x0 : ο . x0
Known neq_4_0neq_4_0 : u4 = 0∀ x0 : ο . x0
Known neq_4_2neq_4_2 : u4 = u2∀ x0 : ο . x0
Known neq_5_4neq_5_4 : u5 = u4∀ x0 : ο . x0
Known neq_7_4neq_7_4 : u7 = u4∀ x0 : ο . x0
Known neq_6_1neq_6_1 : u6 = u1∀ x0 : ο . x0
Known neq_6_3neq_6_3 : u6 = u3∀ x0 : ο . x0
Known neq_6_0neq_6_0 : u6 = 0∀ x0 : ο . x0
Known neq_6_2neq_6_2 : u6 = u2∀ x0 : ο . x0
Known neq_6_5neq_6_5 : u6 = u5∀ x0 : ο . x0
Known neq_7_6neq_7_6 : u7 = u6∀ x0 : ο . x0
Known neq_6_4neq_6_4 : u6 = u4∀ x0 : ο . x0
Known d183f.. : u10 = u1∀ x0 : ο . x0
Known 68152.. : u10 = u3∀ x0 : ο . x0
Known 0e10e.. : u10 = 0∀ x0 : ο . x0
Known e02d9.. : u10 = u2∀ x0 : ο . x0
Known a7d50.. : u10 = u5∀ x0 : ο . x0
Known 7d7a8.. : u10 = u7∀ x0 : ο . x0
Known 33d16.. : u10 = u4∀ x0 : ο . x0
Known d0401.. : u10 = u6∀ x0 : ο . x0
Known neq_8_1neq_8_1 : u8 = u1∀ x0 : ο . x0
Known neq_8_3neq_8_3 : u8 = u3∀ x0 : ο . x0
Known neq_8_0neq_8_0 : u8 = 0∀ x0 : ο . x0
Known neq_8_2neq_8_2 : u8 = u2∀ x0 : ο . x0
Known neq_8_5neq_8_5 : u8 = u5∀ x0 : ο . x0
Known neq_8_7neq_8_7 : u8 = u7∀ x0 : ο . x0
Known neq_8_4neq_8_4 : u8 = u4∀ x0 : ο . x0
Known neq_8_6neq_8_6 : u8 = u6∀ x0 : ο . x0
Known 96175.. : u10 = u8∀ x0 : ο . x0
Known 618f7.. : u11 = u1∀ x0 : ο . x0
Known b06e1.. : u11 = u3∀ x0 : ο . x0
Known 19f75.. : u11 = 0∀ x0 : ο . x0
Known 2c42c.. : u11 = u2∀ x0 : ο . x0
Known 1b659.. : u11 = u5∀ x0 : ο . x0
Known 4abfa.. : u11 = u7∀ x0 : ο . x0
Known 6a6f1.. : u11 = u4∀ x0 : ο . x0
Known 949f2.. : u11 = u6∀ x0 : ο . x0
Known ebfb7.. : u11 = u10∀ x0 : ο . x0
Known b3a20.. : u11 = u8∀ x0 : ο . x0
Known neq_9_1neq_9_1 : u9 = u1∀ x0 : ο . x0
Known neq_9_3neq_9_3 : u9 = u3∀ x0 : ο . x0
Known neq_9_0neq_9_0 : u9 = 0∀ x0 : ο . x0
Known neq_9_2neq_9_2 : u9 = u2∀ x0 : ο . x0
Known neq_9_5neq_9_5 : u9 = u5∀ x0 : ο . x0
Known neq_9_7neq_9_7 : u9 = u7∀ x0 : ο . x0
Known neq_9_4neq_9_4 : u9 = u4∀ x0 : ο . x0
Known neq_9_6neq_9_6 : u9 = u6∀ x0 : ο . x0
Known 4fc31.. : u10 = u9∀ x0 : ο . x0
Known neq_9_8neq_9_8 : u9 = u8∀ x0 : ο . x0
Known 4f03f.. : u11 = u9∀ x0 : ο . x0
Known 16246.. : u13 = u1∀ x0 : ο . x0
Known 19222.. : u13 = u3∀ x0 : ο . x0
Known 733b2.. : u13 = 0∀ x0 : ο . x0
Known 40d25.. : u13 = u2∀ x0 : ο . x0
Known 29333.. : u13 = u5∀ x0 : ο . x0
Known d9b35.. : u13 = u7∀ x0 : ο . x0
Known 4d850.. : u13 = u4∀ x0 : ο . x0
Known 02f5c.. : u13 = u6∀ x0 : ο . x0
Known 78358.. : u13 = u10∀ x0 : ο . x0
Known 0b225.. : u13 = u8∀ x0 : ο . x0
Known bf497.. : u13 = u11∀ x0 : ο . x0
Known 3f24c.. : u13 = u9∀ x0 : ο . x0
Known ac679.. : u14 = u1∀ x0 : ο . x0
Known d0fe4.. : u14 = u3∀ x0 : ο . x0
Known fc551.. : u14 = 0∀ x0 : ο . x0
Known 0bb18.. : u14 = u2∀ x0 : ο . x0
Known d6c57.. : u14 = u5∀ x0 : ο . x0
Known 01bf6.. : u14 = u7∀ x0 : ο . x0
Known ffd62.. : u14 = u4∀ x0 : ο . x0
Known 62d80.. : u14 = u6∀ x0 : ο . x0
Known f5ab5.. : u14 = u10∀ x0 : ο . x0
Known 4f6ad.. : u14 = u8∀ x0 : ο . x0
Known 4e1aa.. : u14 = u11∀ x0 : ο . x0
Known d7730.. : u14 = u9∀ x0 : ο . x0
Known e1947.. : u14 = u13∀ x0 : ο . x0
Known 174d1.. : u15 = u1∀ x0 : ο . x0
Known 70124.. : u15 = u3∀ x0 : ο . x0
Known 160ad.. : u15 = 0∀ x0 : ο . x0
Known 4d715.. : u15 = u2∀ x0 : ο . x0
Known 24fad.. : u15 = u5∀ x0 : ο . x0
Known 008b1.. : u15 = u7∀ x0 : ο . x0
Known 4b742.. : u15 = u4∀ x0 : ο . x0
Known f5ac7.. : u15 = u6∀ x0 : ο . x0
Known b7f53.. : u15 = u10∀ x0 : ο . x0
Known c0d75.. : u15 = u8∀ x0 : ο . x0
Known 9c5db.. : u15 = u11∀ x0 : ο . x0
Known 3a7bc.. : u15 = u9∀ x0 : ο . x0
Known 4d8d4.. : u15 = u13∀ x0 : ο . x0
Known b8e82.. : u15 = u14∀ x0 : ο . x0
Known ce0cd.. : u12 = u1∀ x0 : ο . x0
Known e015c.. : u12 = u3∀ x0 : ο . x0
Known efdfc.. : u12 = 0∀ x0 : ο . x0
Known 8158b.. : u12 = u2∀ x0 : ο . x0
Known 07eba.. : u12 = u5∀ x0 : ο . x0
Known 6a15f.. : u12 = u7∀ x0 : ο . x0
Known 7aa79.. : u12 = u4∀ x0 : ο . x0
Known 0bd83.. : u12 = u6∀ x0 : ο . x0
Known 6c583.. : u12 = u10∀ x0 : ο . x0
Known a6a6c.. : u12 = u8∀ x0 : ο . x0
Known ab306.. : u12 = u11∀ x0 : ο . x0
Known 22885.. : u12 = u9∀ x0 : ο . x0
Known ad02f.. : u13 = u12∀ x0 : ο . x0
Known ef4da.. : u14 = u12∀ x0 : ο . x0
Known 72647.. : u15 = u12∀ x0 : ο . x0
Theorem ef8a4.. : ∀ x0 . x0u16∀ x1 . x1x0u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0 = u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x1∀ x2 : ο . x2 (proof)
Theorem f2c34.. : ∀ x0 . x0u16∀ x1 . x1u16u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0 = u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x1x0 = x1 (proof)
Theorem 01145.. : ∀ x0 . x0u16u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 (u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12 x0))) = x0 (proof)