Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrHS6..
/
c1dbd..
PUMUL..
/
ee9ab..
vout
PrHS6..
/
d4627..
87.49 bars
TMZCE..
/
461a3..
negprop ownership controlledby
PrHS6..
upto 0
TMNzm..
/
386dd..
ownership of
e6b6b..
as prop with payaddr
PrHS6..
rightscost 0.00 controlledby
PrHS6..
upto 0
TMGz1..
/
eb9f1..
ownership of
f2824..
as prop with payaddr
PrHS6..
rightscost 0.00 controlledby
PrHS6..
upto 0
TMXCc..
/
fd8dc..
ownership of
bcefe..
as prop with payaddr
PrHS6..
rightscost 0.00 controlledby
PrHS6..
upto 0
TMMsD..
/
10a74..
ownership of
f2665..
as prop with payaddr
PrHS6..
rightscost 0.00 controlledby
PrHS6..
upto 0
PUUQg..
/
beb3a..
doc published by
PrHS6..
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Theorem
bcefe..
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
ordinal
ordinal
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Known
neq_0_ordsucc
neq_0_ordsucc
:
∀ x0 .
0
=
ordsucc
x0
⟶
∀ x1 : ο .
x1
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
ordinal_Empty
ordinal_Empty
:
ordinal
0
Known
ordinal_ordsucc
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
Theorem
e6b6b..
:
not
(
∀ x0 x1 .
ordinal
x0
⟶
ordinal
(
ordsucc
x1
)
⟶
or
(
ordsucc
x1
∈
x0
)
(
x0
=
ordsucc
x1
)
)
(proof)