Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCMc..
/
bd88a..
PUQT4..
/
a4a57..
vout
PrCMc..
/
d73b4..
0.10 bars
TMQrC..
/
7bf9b..
ownership of
285d9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQ6R..
/
971d9..
ownership of
bf5e7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEyw..
/
7db2b..
ownership of
97289..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ7r..
/
a7a49..
ownership of
3f0c1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKa1..
/
cf4b8..
ownership of
397fc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX8s..
/
e3e50..
ownership of
457ec..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTwA..
/
86cb1..
ownership of
1acbd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMW75..
/
d1e5e..
ownership of
84454..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTVW..
/
d7663..
ownership of
f7d63..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNup..
/
38a14..
ownership of
f75a6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMW6G..
/
2d297..
ownership of
eb50f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYGg..
/
4295e..
ownership of
a53f1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLQj..
/
8d924..
ownership of
0094d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaud..
/
b1183..
ownership of
9c440..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXpo..
/
bc53d..
ownership of
59446..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMce1..
/
cec88..
ownership of
7ad23..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQKo..
/
67d9b..
ownership of
bab21..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHb5..
/
60064..
ownership of
76f9e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVTA..
/
75759..
ownership of
0290c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc6r..
/
ebbb6..
ownership of
d4ee4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNLy..
/
2cb01..
ownership of
da3fd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWDu..
/
1bbce..
ownership of
7bc5d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWj9..
/
dbc6f..
ownership of
7a5ab..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKsh..
/
ff366..
ownership of
917a1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYcG..
/
71182..
ownership of
ac1a7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYcs..
/
0f6d3..
ownership of
7dfb2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYnZ..
/
b72a4..
ownership of
3582f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKCh..
/
7f2f3..
ownership of
6e1f7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWch..
/
f0634..
ownership of
e3015..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHQY..
/
f53c9..
ownership of
f3400..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXMe..
/
267e9..
ownership of
adc0e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMayC..
/
ba7e4..
ownership of
8c3dd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZjE..
/
ea3bf..
ownership of
3ddfc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdBz..
/
399a0..
ownership of
41f1b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXze..
/
d4651..
ownership of
b2a11..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFQW..
/
179a9..
ownership of
a07c0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUMpC..
/
2aa9c..
doc published by
PrCmT..
Known
df_met__df_bl__df_mopn__df_fbas__df_fg__df_metu__df_cnfld__df_zring__df_zrh__df_zlm__df_chr__df_zn__df_refld__df_phl__df_ipf__df_ocv__df_css__df_thl
:
∀ x0 : ο .
(
wceq
cme
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wa
(
wb
(
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
cc0
)
(
wceq
(
cv
x3
)
(
cv
x4
)
)
)
(
wral
(
λ x5 .
wbr
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
co
(
co
(
cv
x5
)
(
cv
x3
)
(
cv
x2
)
)
(
co
(
cv
x5
)
(
cv
x4
)
(
cv
x2
)
)
caddc
)
cle
)
(
λ x5 .
cv
x1
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
co
cr
(
cxp
(
cv
x1
)
(
cv
x1
)
)
cmap
)
)
)
⟶
wceq
cbl
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cdm
(
cdm
(
cv
x1
)
)
)
(
λ x2 x3 .
cxr
)
(
λ x2 x3 .
crab
(
λ x4 .
wbr
(
co
(
cv
x2
)
(
cv
x4
)
(
cv
x1
)
)
(
cv
x3
)
clt
)
(
λ x4 .
cdm
(
cdm
(
cv
x1
)
)
)
)
)
)
⟶
wceq
cmopn
(
cmpt
(
λ x1 .
cuni
(
crn
cxmt
)
)
(
λ x1 .
cfv
(
crn
(
cfv
(
cv
x1
)
cbl
)
)
ctg
)
)
⟶
wceq
cfbas
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
w3a
(
wne
(
cv
x2
)
c0
)
(
wnel
c0
(
cv
x2
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wne
(
cin
(
cv
x2
)
(
cpw
(
cin
(
cv
x3
)
(
cv
x4
)
)
)
)
c0
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x2
)
)
)
(
λ x2 .
cpw
(
cpw
(
cv
x1
)
)
)
)
)
⟶
wceq
cfg
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cfv
(
cv
x1
)
cfbas
)
(
λ x1 x2 .
crab
(
λ x3 .
wne
(
cin
(
cv
x2
)
(
cpw
(
cv
x3
)
)
)
c0
)
(
λ x3 .
cpw
(
cv
x1
)
)
)
)
⟶
wceq
cmetu
(
cmpt
(
λ x1 .
cuni
(
crn
cpsmet
)
)
(
λ x1 .
co
(
cxp
(
cdm
(
cdm
(
cv
x1
)
)
)
(
cdm
(
cdm
(
cv
x1
)
)
)
)
(
crn
(
cmpt
(
λ x2 .
crp
)
(
λ x2 .
cima
(
ccnv
(
cv
x1
)
)
(
co
cc0
(
cv
x2
)
cico
)
)
)
)
cfg
)
)
⟶
wceq
ccnfld
(
cun
(
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
cc
)
(
cop
(
cfv
cnx
cplusg
)
caddc
)
(
cop
(
cfv
cnx
cmulr
)
cmul
)
)
(
csn
(
cop
(
cfv
cnx
cstv
)
ccj
)
)
)
(
cun
(
ctp
(
cop
(
cfv
cnx
cts
)
(
cfv
(
ccom
cabs
cmin
)
cmopn
)
)
(
cop
(
cfv
cnx
cple
)
cle
)
(
cop
(
cfv
cnx
cds
)
(
ccom
cabs
cmin
)
)
)
(
csn
(
cop
(
cfv
cnx
cunif
)
(
cfv
(
ccom
cabs
cmin
)
cmetu
)
)
)
)
)
⟶
wceq
zring
(
co
ccnfld
cz
cress
)
⟶
wceq
czrh
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cuni
(
co
zring
(
cv
x1
)
crh
)
)
)
⟶
wceq
czlm
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
co
(
cv
x1
)
(
cop
(
cfv
cnx
csca
)
zring
)
csts
)
(
cop
(
cfv
cnx
cvsca
)
(
cfv
(
cv
x1
)
cmg
)
)
csts
)
)
⟶
wceq
cchr
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cfv
(
cfv
(
cv
x1
)
cur
)
(
cfv
(
cv
x1
)
cod
)
)
)
⟶
wceq
czn
(
cmpt
(
λ x1 .
cn0
)
(
λ x1 .
csb
zring
(
λ x2 .
csb
(
co
(
cv
x2
)
(
co
(
cv
x2
)
(
cfv
(
csn
(
cv
x1
)
)
(
cfv
(
cv
x2
)
crsp
)
)
cqg
)
cqus
)
(
λ x3 .
co
(
cv
x3
)
(
cop
(
cfv
cnx
cple
)
(
csb
(
cres
(
cfv
(
cv
x3
)
czrh
)
(
cif
(
wceq
(
cv
x1
)
cc0
)
cz
(
co
cc0
(
cv
x1
)
cfzo
)
)
)
(
λ x4 .
ccom
(
ccom
(
cv
x4
)
cle
)
(
ccnv
(
cv
x4
)
)
)
)
)
csts
)
)
)
)
⟶
wceq
crefld
(
co
ccnfld
cr
cress
)
⟶
wceq
cphl
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wa
(
wcel
(
cv
x4
)
csr
)
(
wral
(
λ x5 .
w3a
(
wcel
(
cmpt
(
λ x6 .
cv
x2
)
(
λ x6 .
co
(
cv
x6
)
(
cv
x5
)
(
cv
x3
)
)
)
(
co
(
cv
x1
)
(
cfv
(
cv
x4
)
crglmod
)
clmhm
)
)
(
wceq
(
co
(
cv
x5
)
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x4
)
c0g
)
⟶
wceq
(
cv
x5
)
(
cfv
(
cv
x1
)
c0g
)
)
(
wral
(
λ x6 .
wceq
(
cfv
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
(
cfv
(
cv
x4
)
cstv
)
)
(
co
(
cv
x6
)
(
cv
x5
)
(
cv
x3
)
)
)
(
λ x6 .
cv
x2
)
)
)
(
λ x5 .
cv
x2
)
)
)
(
cfv
(
cv
x1
)
csca
)
)
(
cfv
(
cv
x1
)
cip
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
clvec
)
)
⟶
wceq
cipf
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 x3 .
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cip
)
)
)
)
⟶
wceq
cocv
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cip
)
)
(
cfv
(
cfv
(
cv
x1
)
csca
)
c0g
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
)
)
⟶
wceq
ccss
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cab
(
λ x2 .
wceq
(
cv
x2
)
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cocv
)
)
(
cfv
(
cv
x1
)
cocv
)
)
)
)
)
⟶
wceq
cthl
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cfv
(
cfv
(
cv
x1
)
ccss
)
cipo
)
(
cop
(
cfv
cnx
coc
)
(
cfv
(
cv
x1
)
cocv
)
)
csts
)
)
⟶
x0
)
⟶
x0
Theorem
df_met
:
wceq
cme
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wa
(
wb
(
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
cc0
)
(
wceq
(
cv
x2
)
(
cv
x3
)
)
)
(
wral
(
λ x4 .
wbr
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
(
co
(
co
(
cv
x4
)
(
cv
x2
)
(
cv
x1
)
)
(
co
(
cv
x4
)
(
cv
x3
)
(
cv
x1
)
)
caddc
)
cle
)
(
λ x4 .
cv
x0
)
)
)
(
λ x3 .
cv
x0
)
)
(
λ x2 .
cv
x0
)
)
(
λ x1 .
co
cr
(
cxp
(
cv
x0
)
(
cv
x0
)
)
cmap
)
)
)
(proof)
Theorem
df_bl
:
wceq
cbl
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cdm
(
cdm
(
cv
x0
)
)
)
(
λ x1 x2 .
cxr
)
(
λ x1 x2 .
crab
(
λ x3 .
wbr
(
co
(
cv
x1
)
(
cv
x3
)
(
cv
x0
)
)
(
cv
x2
)
clt
)
(
λ x3 .
cdm
(
cdm
(
cv
x0
)
)
)
)
)
)
(proof)
Theorem
df_mopn
:
wceq
cmopn
(
cmpt
(
λ x0 .
cuni
(
crn
cxmt
)
)
(
λ x0 .
cfv
(
crn
(
cfv
(
cv
x0
)
cbl
)
)
ctg
)
)
(proof)
Theorem
df_fbas
:
wceq
cfbas
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
w3a
(
wne
(
cv
x1
)
c0
)
(
wnel
c0
(
cv
x1
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wne
(
cin
(
cv
x1
)
(
cpw
(
cin
(
cv
x2
)
(
cv
x3
)
)
)
)
c0
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
)
(
λ x1 .
cpw
(
cpw
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_fg
:
wceq
cfg
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cfv
(
cv
x0
)
cfbas
)
(
λ x0 x1 .
crab
(
λ x2 .
wne
(
cin
(
cv
x1
)
(
cpw
(
cv
x2
)
)
)
c0
)
(
λ x2 .
cpw
(
cv
x0
)
)
)
)
(proof)
Theorem
df_metu
:
wceq
cmetu
(
cmpt
(
λ x0 .
cuni
(
crn
cpsmet
)
)
(
λ x0 .
co
(
cxp
(
cdm
(
cdm
(
cv
x0
)
)
)
(
cdm
(
cdm
(
cv
x0
)
)
)
)
(
crn
(
cmpt
(
λ x1 .
crp
)
(
λ x1 .
cima
(
ccnv
(
cv
x0
)
)
(
co
cc0
(
cv
x1
)
cico
)
)
)
)
cfg
)
)
(proof)
Theorem
df_cnfld
:
wceq
ccnfld
(
cun
(
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
cc
)
(
cop
(
cfv
cnx
cplusg
)
caddc
)
(
cop
(
cfv
cnx
cmulr
)
cmul
)
)
(
csn
(
cop
(
cfv
cnx
cstv
)
ccj
)
)
)
(
cun
(
ctp
(
cop
(
cfv
cnx
cts
)
(
cfv
(
ccom
cabs
cmin
)
cmopn
)
)
(
cop
(
cfv
cnx
cple
)
cle
)
(
cop
(
cfv
cnx
cds
)
(
ccom
cabs
cmin
)
)
)
(
csn
(
cop
(
cfv
cnx
cunif
)
(
cfv
(
ccom
cabs
cmin
)
cmetu
)
)
)
)
)
(proof)
Theorem
df_zring
:
wceq
zring
(
co
ccnfld
cz
cress
)
(proof)
Theorem
df_zrh
:
wceq
czrh
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cuni
(
co
zring
(
cv
x0
)
crh
)
)
)
(proof)
Theorem
df_zlm
:
wceq
czlm
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
co
(
cv
x0
)
(
cop
(
cfv
cnx
csca
)
zring
)
csts
)
(
cop
(
cfv
cnx
cvsca
)
(
cfv
(
cv
x0
)
cmg
)
)
csts
)
)
(proof)
Theorem
df_chr
:
wceq
cchr
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cfv
(
cfv
(
cv
x0
)
cur
)
(
cfv
(
cv
x0
)
cod
)
)
)
(proof)
Theorem
df_zn
:
wceq
czn
(
cmpt
(
λ x0 .
cn0
)
(
λ x0 .
csb
zring
(
λ x1 .
csb
(
co
(
cv
x1
)
(
co
(
cv
x1
)
(
cfv
(
csn
(
cv
x0
)
)
(
cfv
(
cv
x1
)
crsp
)
)
cqg
)
cqus
)
(
λ x2 .
co
(
cv
x2
)
(
cop
(
cfv
cnx
cple
)
(
csb
(
cres
(
cfv
(
cv
x2
)
czrh
)
(
cif
(
wceq
(
cv
x0
)
cc0
)
cz
(
co
cc0
(
cv
x0
)
cfzo
)
)
)
(
λ x3 .
ccom
(
ccom
(
cv
x3
)
cle
)
(
ccnv
(
cv
x3
)
)
)
)
)
csts
)
)
)
)
(proof)
Theorem
df_refld
:
wceq
crefld
(
co
ccnfld
cr
cress
)
(proof)
Theorem
df_phl
:
wceq
cphl
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wa
(
wcel
(
cv
x3
)
csr
)
(
wral
(
λ x4 .
w3a
(
wcel
(
cmpt
(
λ x5 .
cv
x1
)
(
λ x5 .
co
(
cv
x5
)
(
cv
x4
)
(
cv
x2
)
)
)
(
co
(
cv
x0
)
(
cfv
(
cv
x3
)
crglmod
)
clmhm
)
)
(
wceq
(
co
(
cv
x4
)
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x3
)
c0g
)
⟶
wceq
(
cv
x4
)
(
cfv
(
cv
x0
)
c0g
)
)
(
wral
(
λ x5 .
wceq
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
(
cfv
(
cv
x3
)
cstv
)
)
(
co
(
cv
x5
)
(
cv
x4
)
(
cv
x2
)
)
)
(
λ x5 .
cv
x1
)
)
)
(
λ x4 .
cv
x1
)
)
)
(
cfv
(
cv
x0
)
csca
)
)
(
cfv
(
cv
x0
)
cip
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
clvec
)
)
(proof)
Theorem
df_ipf
:
wceq
cipf
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 x2 .
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cip
)
)
)
)
(proof)
Theorem
df_ocv
:
wceq
cocv
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cip
)
)
(
cfv
(
cfv
(
cv
x0
)
csca
)
c0g
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
)
)
(proof)
Theorem
df_css
:
wceq
ccss
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cab
(
λ x1 .
wceq
(
cv
x1
)
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cocv
)
)
(
cfv
(
cv
x0
)
cocv
)
)
)
)
)
(proof)
Theorem
df_thl
:
wceq
cthl
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cfv
(
cfv
(
cv
x0
)
ccss
)
cipo
)
(
cop
(
cfv
cnx
coc
)
(
cfv
(
cv
x0
)
cocv
)
)
csts
)
)
(proof)