Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrQJK..
/
1cde8..
PUckN..
/
7b6c8..
vout
PrQJK..
/
c4772..
0.10 bars
TMW3F..
/
3e769..
ownership of
865c2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMd2g..
/
db65e..
ownership of
b9785..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc6b..
/
5582a..
ownership of
72b7a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMY9R..
/
9e257..
ownership of
1d387..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaGQ..
/
d2207..
ownership of
01357..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQPK..
/
0214e..
ownership of
52035..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGhf..
/
e8152..
ownership of
79c88..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZCE..
/
39514..
ownership of
4e346..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTmM..
/
2b6fd..
ownership of
7f466..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYc5..
/
618d0..
ownership of
ebd7e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZHJ..
/
ff59c..
ownership of
cede5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKLf..
/
33e09..
ownership of
00293..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGRW..
/
58b5d..
ownership of
a39e0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHh6..
/
7f092..
ownership of
73228..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbNb..
/
9e2f6..
ownership of
24039..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXB4..
/
3ed27..
ownership of
0d0da..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGkc..
/
8fc76..
ownership of
26f14..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMazS..
/
15182..
ownership of
423ca..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGep..
/
71e0c..
ownership of
fb769..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQ7f..
/
0fe4f..
ownership of
bc64c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU2F..
/
e893c..
ownership of
10170..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFqh..
/
8e5b3..
ownership of
664b3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYwf..
/
9c7c1..
ownership of
45ca4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaTd..
/
a69d3..
ownership of
64f1f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLqA..
/
10b57..
ownership of
139ef..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMadk..
/
b7689..
ownership of
6ac34..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQew..
/
de942..
ownership of
21b8b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdFu..
/
71caa..
ownership of
3281c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTji..
/
9833e..
ownership of
feadf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNJB..
/
05ce6..
ownership of
1f042..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcxu..
/
33007..
ownership of
f71e8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGpo..
/
62dc2..
ownership of
53e97..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMP1x..
/
59979..
ownership of
59279..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMqo..
/
5c0e4..
ownership of
dbee4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZMk..
/
b9d61..
ownership of
248a5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHzL..
/
fabd8..
ownership of
a9b6a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUXUn..
/
5061a..
doc published by
PrCmT..
Known
df_bj_rrvec__df_tau__df_finxp__ax_luk1__ax_luk2__ax_luk3__ax_wl_13v__ax_wl_11v__ax_wl_8cl__df_wl_clelv2__df_totbnd__df_bnd__df_ismty__df_rrn__df_ass__df_exid__df_mgmOLD__df_sgrOLD
:
∀ x0 : ο .
(
wceq
crrvec
(
crab
(
λ x1 .
wceq
(
cfv
(
cv
x1
)
csca
)
crefld
)
(
λ x1 .
clvec
)
)
⟶
wceq
ctau
(
cinf
(
cin
crp
(
cima
(
ccnv
ccos
)
(
csn
c1
)
)
)
cr
clt
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cfinxp
x1
x2
)
(
cab
(
λ x3 .
wa
(
wcel
x2
com
)
(
wceq
c0
(
cfv
x2
(
crdg
(
cmpt2
(
λ x4 x5 .
com
)
(
λ x4 x5 .
cvv
)
(
λ x4 x5 .
cif
(
wa
(
wceq
(
cv
x4
)
c1o
)
(
wcel
(
cv
x5
)
x1
)
)
c0
(
cif
(
wcel
(
cv
x5
)
(
cxp
cvv
x1
)
)
(
cop
(
cuni
(
cv
x4
)
)
(
cfv
(
cv
x5
)
c1st
)
)
(
cop
(
cv
x4
)
(
cv
x5
)
)
)
)
)
(
cop
x2
(
cv
x3
)
)
)
)
)
)
)
)
⟶
(
∀ x1 x2 x3 : ο .
(
x1
⟶
x2
)
⟶
(
x2
⟶
x3
)
⟶
x1
⟶
x3
)
⟶
(
∀ x1 : ο .
(
wn
x1
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 : ο .
x1
⟶
wn
x1
⟶
x2
)
⟶
(
∀ x1 x2 .
wn
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x1
)
)
⟶
wceq
(
cv
x1
)
(
cv
x2
)
⟶
∀ x3 .
wceq
(
cv
x1
)
(
cv
x2
)
)
⟶
(
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
)
⟶
∀ x2 x3 .
x1
x3
x2
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 x3 .
wceq
(
cv
x2
)
(
cv
x3
)
⟶
wcel_wl
(
λ x4 .
x1
)
⟶
wcel_wl
(
λ x4 .
x1
)
)
⟶
(
∀ x1 :
ι →
ι → ο
.
∀ x2 .
wb
(
wcel2_wl
x1
)
(
∀ x3 .
wceq
(
cv
x3
)
(
cv
x2
)
⟶
wcel_wl
(
λ x4 .
x1
x2
)
)
)
⟶
wceq
ctotbnd
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wa
(
wceq
(
cuni
(
cv
x4
)
)
(
cv
x1
)
)
(
wral
(
λ x5 .
wrex
(
λ x6 .
wceq
(
cv
x5
)
(
co
(
cv
x6
)
(
cv
x3
)
(
cfv
(
cv
x2
)
cbl
)
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x4
)
)
)
(
λ x4 .
cfn
)
)
(
λ x3 .
crp
)
)
(
λ x2 .
cfv
(
cv
x1
)
cme
)
)
)
⟶
wceq
cbnd
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wceq
(
cv
x1
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x2
)
cbl
)
)
)
(
λ x4 .
crp
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cfv
(
cv
x1
)
cme
)
)
)
⟶
wceq
cismty
(
cmpt2
(
λ x1 x2 .
cuni
(
crn
cxmt
)
)
(
λ x1 x2 .
cuni
(
crn
cxmt
)
)
(
λ x1 x2 .
cab
(
λ x3 .
wa
(
wf1o
(
cdm
(
cdm
(
cv
x1
)
)
)
(
cdm
(
cdm
(
cv
x2
)
)
)
(
cv
x3
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x1
)
)
(
co
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cv
x2
)
)
)
(
λ x5 .
cdm
(
cdm
(
cv
x1
)
)
)
)
(
λ x4 .
cdm
(
cdm
(
cv
x1
)
)
)
)
)
)
)
⟶
wceq
crrn
(
cmpt
(
λ x1 .
cfn
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
co
cr
(
cv
x1
)
cmap
)
(
λ x2 x3 .
co
cr
(
cv
x1
)
cmap
)
(
λ x2 x3 .
cfv
(
csu
(
cv
x1
)
(
λ x4 .
co
(
co
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x3
)
)
cmin
)
c2
cexp
)
)
csqrt
)
)
)
⟶
wceq
cass
(
cab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
(
cv
x4
)
(
cv
x1
)
)
(
co
(
cv
x2
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x1
)
)
(
cv
x1
)
)
)
(
λ x4 .
cdm
(
cdm
(
cv
x1
)
)
)
)
(
λ x3 .
cdm
(
cdm
(
cv
x1
)
)
)
)
(
λ x2 .
cdm
(
cdm
(
cv
x1
)
)
)
)
)
⟶
wceq
cexid
(
cab
(
λ x1 .
wrex
(
λ x2 .
wral
(
λ x3 .
wa
(
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
(
cv
x3
)
)
(
wceq
(
co
(
cv
x3
)
(
cv
x2
)
(
cv
x1
)
)
(
cv
x3
)
)
)
(
λ x3 .
cdm
(
cdm
(
cv
x1
)
)
)
)
(
λ x2 .
cdm
(
cdm
(
cv
x1
)
)
)
)
)
⟶
wceq
cmagm
(
cab
(
λ x1 .
wex
(
λ x2 .
wf
(
cxp
(
cv
x2
)
(
cv
x2
)
)
(
cv
x2
)
(
cv
x1
)
)
)
)
⟶
wceq
csem
(
cin
cmagm
cass
)
⟶
x0
)
⟶
x0
Theorem
df_bj_rrvec
:
wceq
crrvec
(
crab
(
λ x0 .
wceq
(
cfv
(
cv
x0
)
csca
)
crefld
)
(
λ x0 .
clvec
)
)
(proof)
Theorem
df_tau
:
wceq
ctau
(
cinf
(
cin
crp
(
cima
(
ccnv
ccos
)
(
csn
c1
)
)
)
cr
clt
)
(proof)
Theorem
df_finxp
:
∀ x0 x1 :
ι → ο
.
wceq
(
cfinxp
x0
x1
)
(
cab
(
λ x2 .
wa
(
wcel
x1
com
)
(
wceq
c0
(
cfv
x1
(
crdg
(
cmpt2
(
λ x3 x4 .
com
)
(
λ x3 x4 .
cvv
)
(
λ x3 x4 .
cif
(
wa
(
wceq
(
cv
x3
)
c1o
)
(
wcel
(
cv
x4
)
x0
)
)
c0
(
cif
(
wcel
(
cv
x4
)
(
cxp
cvv
x0
)
)
(
cop
(
cuni
(
cv
x3
)
)
(
cfv
(
cv
x4
)
c1st
)
)
(
cop
(
cv
x3
)
(
cv
x4
)
)
)
)
)
(
cop
x1
(
cv
x2
)
)
)
)
)
)
)
(proof)
Theorem
ax_luk1
:
∀ x0 x1 x2 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x2
)
⟶
x0
⟶
x2
(proof)
Theorem
ax_luk2
:
∀ x0 : ο .
(
wn
x0
⟶
x0
)
⟶
x0
(proof)
Theorem
ax_luk3
:
∀ x0 x1 : ο .
x0
⟶
wn
x0
⟶
x1
(proof)
Theorem
ax_wl_13v
:
∀ x0 x1 .
wn
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x0
)
)
⟶
wceq
(
cv
x0
)
(
cv
x1
)
⟶
∀ x2 .
wceq
(
cv
x0
)
(
cv
x1
)
(proof)
Theorem
ax_wl_11v
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
)
⟶
∀ x1 x2 .
x0
x2
x1
(proof)
Theorem
ax_wl_8cl
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
wceq
(
cv
x1
)
(
cv
x2
)
⟶
wcel_wl
(
λ x3 .
x0
)
⟶
wcel_wl
(
λ x3 .
x0
)
(proof)
Theorem
df_wl_clelv2
:
∀ x0 :
ι →
ι → ο
.
∀ x1 .
wb
(
wcel2_wl
x0
)
(
∀ x2 .
wceq
(
cv
x2
)
(
cv
x1
)
⟶
wcel_wl
(
λ x3 .
x0
x1
)
)
(proof)
Theorem
df_totbnd
:
wceq
ctotbnd
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wrex
(
λ x3 .
wa
(
wceq
(
cuni
(
cv
x3
)
)
(
cv
x0
)
)
(
wral
(
λ x4 .
wrex
(
λ x5 .
wceq
(
cv
x4
)
(
co
(
cv
x5
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cbl
)
)
)
(
λ x5 .
cv
x0
)
)
(
λ x4 .
cv
x3
)
)
)
(
λ x3 .
cfn
)
)
(
λ x2 .
crp
)
)
(
λ x1 .
cfv
(
cv
x0
)
cme
)
)
)
(proof)
Theorem
df_bnd
:
wceq
cbnd
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wrex
(
λ x3 .
wceq
(
cv
x0
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cbl
)
)
)
(
λ x3 .
crp
)
)
(
λ x2 .
cv
x0
)
)
(
λ x1 .
cfv
(
cv
x0
)
cme
)
)
)
(proof)
Theorem
df_ismty
:
wceq
cismty
(
cmpt2
(
λ x0 x1 .
cuni
(
crn
cxmt
)
)
(
λ x0 x1 .
cuni
(
crn
cxmt
)
)
(
λ x0 x1 .
cab
(
λ x2 .
wa
(
wf1o
(
cdm
(
cdm
(
cv
x0
)
)
)
(
cdm
(
cdm
(
cv
x1
)
)
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x0
)
)
(
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cv
x1
)
)
)
(
λ x4 .
cdm
(
cdm
(
cv
x0
)
)
)
)
(
λ x3 .
cdm
(
cdm
(
cv
x0
)
)
)
)
)
)
)
(proof)
Theorem
df_rrn
:
wceq
crrn
(
cmpt
(
λ x0 .
cfn
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
co
cr
(
cv
x0
)
cmap
)
(
λ x1 x2 .
co
cr
(
cv
x0
)
cmap
)
(
λ x1 x2 .
cfv
(
csu
(
cv
x0
)
(
λ x3 .
co
(
co
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
cmin
)
c2
cexp
)
)
csqrt
)
)
)
(proof)
Theorem
df_ass
:
wceq
cass
(
cab
(
λ x0 .
wral
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
co
(
cv
x1
)
(
cv
x2
)
(
cv
x0
)
)
(
cv
x3
)
(
cv
x0
)
)
(
co
(
cv
x1
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x0
)
)
(
cv
x0
)
)
)
(
λ x3 .
cdm
(
cdm
(
cv
x0
)
)
)
)
(
λ x2 .
cdm
(
cdm
(
cv
x0
)
)
)
)
(
λ x1 .
cdm
(
cdm
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_exid
:
wceq
cexid
(
cab
(
λ x0 .
wrex
(
λ x1 .
wral
(
λ x2 .
wa
(
wceq
(
co
(
cv
x1
)
(
cv
x2
)
(
cv
x0
)
)
(
cv
x2
)
)
(
wceq
(
co
(
cv
x2
)
(
cv
x1
)
(
cv
x0
)
)
(
cv
x2
)
)
)
(
λ x2 .
cdm
(
cdm
(
cv
x0
)
)
)
)
(
λ x1 .
cdm
(
cdm
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_mgmOLD
:
wceq
cmagm
(
cab
(
λ x0 .
wex
(
λ x1 .
wf
(
cxp
(
cv
x1
)
(
cv
x1
)
)
(
cv
x1
)
(
cv
x0
)
)
)
)
(proof)
Theorem
df_sgrOLD
:
wceq
csem
(
cin
cmagm
cass
)
(proof)