Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr58w..
/
7803e..
PUQUY..
/
bb68c..
vout
Pr58w..
/
f68ed..
0.10 bars
TMNJL..
/
e79a8..
ownership of
1a345..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcQa..
/
f9d4c..
ownership of
3e3ec..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKQs..
/
7fb57..
ownership of
8756f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXrg..
/
7ec62..
ownership of
c9384..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLJN..
/
d678e..
ownership of
c3987..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMd46..
/
38264..
ownership of
f2977..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRdt..
/
10dff..
ownership of
71485..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb2W..
/
c99c3..
ownership of
d5be2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVHq..
/
4f07c..
ownership of
da79a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZmw..
/
d35bf..
ownership of
c53a7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQW1..
/
6a5d7..
ownership of
9b44b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRd1..
/
c4c17..
ownership of
bb11c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbPv..
/
bb984..
ownership of
2f98d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdGg..
/
d7e78..
ownership of
c01b4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRXy..
/
ed911..
ownership of
d576a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbd7..
/
ffdd4..
ownership of
50133..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX4P..
/
1eacc..
ownership of
95e7a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUqv..
/
9477c..
ownership of
035d1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSmQ..
/
9d233..
ownership of
888ec..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH31..
/
d2fbe..
ownership of
aaa0c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWR7..
/
3407a..
ownership of
97946..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcMw..
/
e9910..
ownership of
cb0bf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVW4..
/
75d98..
ownership of
70920..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXiz..
/
fc6b4..
ownership of
2f542..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdPV..
/
1393d..
ownership of
bdd1c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPJv..
/
7d7bf..
ownership of
022f0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSDz..
/
96202..
ownership of
3244a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMG3A..
/
e6828..
ownership of
71813..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMpK..
/
213e6..
ownership of
a7f4e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUnS..
/
8c21d..
ownership of
ac374..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMch5..
/
d4661..
ownership of
a6a07..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXk1..
/
d493f..
ownership of
ff187..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcqN..
/
afa5d..
ownership of
b3360..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQ3y..
/
e6746..
ownership of
fe9ad..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWe4..
/
c3482..
ownership of
9ade5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMW6B..
/
75b4f..
ownership of
6eb09..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUQ2W..
/
d2a5f..
doc published by
PrCmT..
Known
df_ec__df_qs__df_map__df_pm__df_ixp__df_en__df_dom__df_sdom__df_fin__df_fsupp__df_fi__df_sup__df_inf__df_oi__df_har__df_wdom__ax_reg__ax_inf
:
∀ x0 : ο .
(
(
∀ x1 x2 :
ι → ο
.
wceq
(
cec
x1
x2
)
(
cima
x2
(
csn
x1
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cqs
x1
x2
)
(
cab
(
λ x3 .
wrex
(
λ x4 .
wceq
(
cv
x3
)
(
cec
(
cv
x4
)
x2
)
)
(
λ x4 .
x1
)
)
)
)
⟶
wceq
cmap
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cab
(
λ x3 .
wf
(
cv
x2
)
(
cv
x1
)
(
cv
x3
)
)
)
)
⟶
wceq
cpm
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
crab
(
λ x3 .
wfun
(
cv
x3
)
)
(
λ x3 .
cpw
(
cxp
(
cv
x2
)
(
cv
x1
)
)
)
)
)
⟶
(
∀ x1 x2 :
ι →
ι → ο
.
wceq
(
cixp
x1
x2
)
(
cab
(
λ x3 .
wa
(
wfn
(
cv
x3
)
(
cab
(
λ x4 .
wcel
(
cv
x4
)
(
x1
x4
)
)
)
)
(
wral
(
λ x4 .
wcel
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
x2
x4
)
)
x1
)
)
)
)
⟶
wceq
cen
(
copab
(
λ x1 x2 .
wex
(
λ x3 .
wf1o
(
cv
x1
)
(
cv
x2
)
(
cv
x3
)
)
)
)
⟶
wceq
cdom
(
copab
(
λ x1 x2 .
wex
(
λ x3 .
wf1
(
cv
x1
)
(
cv
x2
)
(
cv
x3
)
)
)
)
⟶
wceq
csdm
(
cdif
cdom
cen
)
⟶
wceq
cfn
(
cab
(
λ x1 .
wrex
(
λ x2 .
wbr
(
cv
x1
)
(
cv
x2
)
cen
)
(
λ x2 .
com
)
)
)
⟶
wceq
cfsupp
(
copab
(
λ x1 x2 .
wa
(
wfun
(
cv
x1
)
)
(
wcel
(
co
(
cv
x1
)
(
cv
x2
)
csupp
)
cfn
)
)
)
⟶
wceq
cfi
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cab
(
λ x2 .
wrex
(
λ x3 .
wceq
(
cv
x2
)
(
cint
(
cv
x3
)
)
)
(
λ x3 .
cin
(
cpw
(
cv
x1
)
)
cfn
)
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wceq
(
csup
x1
x2
x3
)
(
cuni
(
crab
(
λ x4 .
wa
(
wral
(
λ x5 .
wn
(
wbr
(
cv
x4
)
(
cv
x5
)
x3
)
)
(
λ x5 .
x1
)
)
(
wral
(
λ x5 .
wbr
(
cv
x5
)
(
cv
x4
)
x3
⟶
wrex
(
λ x6 .
wbr
(
cv
x5
)
(
cv
x6
)
x3
)
(
λ x6 .
x1
)
)
(
λ x5 .
x2
)
)
)
(
λ x4 .
x2
)
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wceq
(
cinf
x1
x2
x3
)
(
csup
x1
x2
(
ccnv
x3
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
coi
x1
x2
)
(
cif
(
wa
(
wwe
x1
x2
)
(
wse
x1
x2
)
)
(
cres
(
crecs
(
cmpt
(
λ x3 .
cvv
)
(
λ x3 .
crio
(
λ x4 .
wral
(
λ x5 .
wn
(
wbr
(
cv
x5
)
(
cv
x4
)
x2
)
)
(
λ x5 .
crab
(
λ x6 .
wral
(
λ x7 .
wbr
(
cv
x7
)
(
cv
x6
)
x2
)
(
λ x7 .
crn
(
cv
x3
)
)
)
(
λ x6 .
x1
)
)
)
(
λ x4 .
crab
(
λ x5 .
wral
(
λ x6 .
wbr
(
cv
x6
)
(
cv
x5
)
x2
)
(
λ x6 .
crn
(
cv
x3
)
)
)
(
λ x5 .
x1
)
)
)
)
)
(
crab
(
λ x3 .
wrex
(
λ x4 .
wral
(
λ x5 .
wbr
(
cv
x5
)
(
cv
x4
)
x2
)
(
λ x5 .
cima
(
crecs
(
cmpt
(
λ x6 .
cvv
)
(
λ x6 .
crio
(
λ x7 .
wral
(
λ x8 .
wn
(
wbr
(
cv
x8
)
(
cv
x7
)
x2
)
)
(
λ x8 .
crab
(
λ x9 .
wral
(
λ x10 .
wbr
(
cv
x10
)
(
cv
x9
)
x2
)
(
λ x10 .
crn
(
cv
x6
)
)
)
(
λ x9 .
x1
)
)
)
(
λ x7 .
crab
(
λ x8 .
wral
(
λ x9 .
wbr
(
cv
x9
)
(
cv
x8
)
x2
)
(
λ x9 .
crn
(
cv
x6
)
)
)
(
λ x8 .
x1
)
)
)
)
)
(
cv
x3
)
)
)
(
λ x4 .
x1
)
)
(
λ x3 .
con0
)
)
)
c0
)
)
⟶
wceq
char
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wbr
(
cv
x2
)
(
cv
x1
)
cdom
)
(
λ x2 .
con0
)
)
)
⟶
wceq
cwdom
(
copab
(
λ x1 x2 .
wo
(
wceq
(
cv
x1
)
c0
)
(
wex
(
λ x3 .
wfo
(
cv
x2
)
(
cv
x1
)
(
cv
x3
)
)
)
)
)
⟶
(
∀ x1 .
wex
(
λ x2 .
wcel
(
cv
x2
)
(
cv
x1
)
)
⟶
wex
(
λ x2 .
wa
(
wcel
(
cv
x2
)
(
cv
x1
)
)
(
∀ x3 .
wcel
(
cv
x3
)
(
cv
x2
)
⟶
wn
(
wcel
(
cv
x3
)
(
cv
x1
)
)
)
)
)
⟶
(
∀ x1 .
wex
(
λ x2 .
wa
(
wcel
(
cv
x1
)
(
cv
x2
)
)
(
∀ x3 .
wcel
(
cv
x3
)
(
cv
x2
)
⟶
wex
(
λ x4 .
wa
(
wcel
(
cv
x3
)
(
cv
x4
)
)
(
wcel
(
cv
x4
)
(
cv
x2
)
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_ec
:
∀ x0 x1 :
ι → ο
.
wceq
(
cec
x0
x1
)
(
cima
x1
(
csn
x0
)
)
(proof)
Theorem
df_qs
:
∀ x0 x1 :
ι → ο
.
wceq
(
cqs
x0
x1
)
(
cab
(
λ x2 .
wrex
(
λ x3 .
wceq
(
cv
x2
)
(
cec
(
cv
x3
)
x1
)
)
(
λ x3 .
x0
)
)
)
(proof)
Theorem
df_map
:
wceq
cmap
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cab
(
λ x2 .
wf
(
cv
x1
)
(
cv
x0
)
(
cv
x2
)
)
)
)
(proof)
Theorem
df_pm
:
wceq
cpm
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
crab
(
λ x2 .
wfun
(
cv
x2
)
)
(
λ x2 .
cpw
(
cxp
(
cv
x1
)
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_ixp
:
∀ x0 x1 :
ι →
ι → ο
.
wceq
(
cixp
x0
x1
)
(
cab
(
λ x2 .
wa
(
wfn
(
cv
x2
)
(
cab
(
λ x3 .
wcel
(
cv
x3
)
(
x0
x3
)
)
)
)
(
wral
(
λ x3 .
wcel
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
x1
x3
)
)
x0
)
)
)
(proof)
Theorem
df_en
:
wceq
cen
(
copab
(
λ x0 x1 .
wex
(
λ x2 .
wf1o
(
cv
x0
)
(
cv
x1
)
(
cv
x2
)
)
)
)
(proof)
Theorem
df_dom
:
wceq
cdom
(
copab
(
λ x0 x1 .
wex
(
λ x2 .
wf1
(
cv
x0
)
(
cv
x1
)
(
cv
x2
)
)
)
)
(proof)
Theorem
df_sdom
:
wceq
csdm
(
cdif
cdom
cen
)
(proof)
Theorem
df_fin
:
wceq
cfn
(
cab
(
λ x0 .
wrex
(
λ x1 .
wbr
(
cv
x0
)
(
cv
x1
)
cen
)
(
λ x1 .
com
)
)
)
(proof)
Theorem
df_fsupp
:
wceq
cfsupp
(
copab
(
λ x0 x1 .
wa
(
wfun
(
cv
x0
)
)
(
wcel
(
co
(
cv
x0
)
(
cv
x1
)
csupp
)
cfn
)
)
)
(proof)
Theorem
df_fi
:
wceq
cfi
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cab
(
λ x1 .
wrex
(
λ x2 .
wceq
(
cv
x1
)
(
cint
(
cv
x2
)
)
)
(
λ x2 .
cin
(
cpw
(
cv
x0
)
)
cfn
)
)
)
)
(proof)
Theorem
df_sup
:
∀ x0 x1 x2 :
ι → ο
.
wceq
(
csup
x0
x1
x2
)
(
cuni
(
crab
(
λ x3 .
wa
(
wral
(
λ x4 .
wn
(
wbr
(
cv
x3
)
(
cv
x4
)
x2
)
)
(
λ x4 .
x0
)
)
(
wral
(
λ x4 .
wbr
(
cv
x4
)
(
cv
x3
)
x2
⟶
wrex
(
λ x5 .
wbr
(
cv
x4
)
(
cv
x5
)
x2
)
(
λ x5 .
x0
)
)
(
λ x4 .
x1
)
)
)
(
λ x3 .
x1
)
)
)
(proof)
Theorem
df_inf
:
∀ x0 x1 x2 :
ι → ο
.
wceq
(
cinf
x0
x1
x2
)
(
csup
x0
x1
(
ccnv
x2
)
)
(proof)
Theorem
df_oi
:
∀ x0 x1 :
ι → ο
.
wceq
(
coi
x0
x1
)
(
cif
(
wa
(
wwe
x0
x1
)
(
wse
x0
x1
)
)
(
cres
(
crecs
(
cmpt
(
λ x2 .
cvv
)
(
λ x2 .
crio
(
λ x3 .
wral
(
λ x4 .
wn
(
wbr
(
cv
x4
)
(
cv
x3
)
x1
)
)
(
λ x4 .
crab
(
λ x5 .
wral
(
λ x6 .
wbr
(
cv
x6
)
(
cv
x5
)
x1
)
(
λ x6 .
crn
(
cv
x2
)
)
)
(
λ x5 .
x0
)
)
)
(
λ x3 .
crab
(
λ x4 .
wral
(
λ x5 .
wbr
(
cv
x5
)
(
cv
x4
)
x1
)
(
λ x5 .
crn
(
cv
x2
)
)
)
(
λ x4 .
x0
)
)
)
)
)
(
crab
(
λ x2 .
wrex
(
λ x3 .
wral
(
λ x4 .
wbr
(
cv
x4
)
(
cv
x3
)
x1
)
(
λ x4 .
cima
(
crecs
(
cmpt
(
λ x5 .
cvv
)
(
λ x5 .
crio
(
λ x6 .
wral
(
λ x7 .
wn
(
wbr
(
cv
x7
)
(
cv
x6
)
x1
)
)
(
λ x7 .
crab
(
λ x8 .
wral
(
λ x9 .
wbr
(
cv
x9
)
(
cv
x8
)
x1
)
(
λ x9 .
crn
(
cv
x5
)
)
)
(
λ x8 .
x0
)
)
)
(
λ x6 .
crab
(
λ x7 .
wral
(
λ x8 .
wbr
(
cv
x8
)
(
cv
x7
)
x1
)
(
λ x8 .
crn
(
cv
x5
)
)
)
(
λ x7 .
x0
)
)
)
)
)
(
cv
x2
)
)
)
(
λ x3 .
x0
)
)
(
λ x2 .
con0
)
)
)
c0
)
(proof)
Theorem
df_har
:
wceq
char
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wbr
(
cv
x1
)
(
cv
x0
)
cdom
)
(
λ x1 .
con0
)
)
)
(proof)
Theorem
df_wdom
:
wceq
cwdom
(
copab
(
λ x0 x1 .
wo
(
wceq
(
cv
x0
)
c0
)
(
wex
(
λ x2 .
wfo
(
cv
x1
)
(
cv
x0
)
(
cv
x2
)
)
)
)
)
(proof)
Theorem
ax_reg
:
∀ x0 .
wex
(
λ x1 .
wcel
(
cv
x1
)
(
cv
x0
)
)
⟶
wex
(
λ x1 .
wa
(
wcel
(
cv
x1
)
(
cv
x0
)
)
(
∀ x2 .
wcel
(
cv
x2
)
(
cv
x1
)
⟶
wn
(
wcel
(
cv
x2
)
(
cv
x0
)
)
)
)
(proof)
Theorem
ax_inf
:
∀ x0 .
wex
(
λ x1 .
wa
(
wcel
(
cv
x0
)
(
cv
x1
)
)
(
∀ x2 .
wcel
(
cv
x2
)
(
cv
x1
)
⟶
wex
(
λ x3 .
wa
(
wcel
(
cv
x2
)
(
cv
x3
)
)
(
wcel
(
cv
x3
)
(
cv
x1
)
)
)
)
)
(proof)