Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr9ob..
/
0a57d..
PUdmE..
/
6fc7e..
vout
Pr9ob..
/
795ba..
1,196.48 bars
PUZmH..
/
ccca3..
signature published by
PrCmT..
Def
94e6a..
True
:
ο
:=
∀ x0 : ο .
x0
⟶
x0
Def
266ad..
False
:
ο
:=
∀ x0 : ο .
x0
Def
0dc3c..
not
:
ο
→
ο
:=
λ x0 : ο .
x0
⟶
False
Def
37da8..
and
:
ο
→
ο
→
ο
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Def
86ae6..
or
:
ο
→
ο
→
ο
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Def
6588e..
iff
:
ο
→
ο
→
ο
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
1d1e5..
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Def
31700..
Subq
:
ι
→
ι
→
ο
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
21238..
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
20faa..
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Def
e69f9..
TransSet
:
ι
→
ο
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Def
e45ed..
Union_closed
:
ι
→
ο
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
prim3
x1
∈
x0
Def
d2954..
Power_closed
:
ι
→
ο
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
prim4
x1
∈
x0
Def
51353..
Repl_closed
:
ι
→
ο
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
prim5
x1
x2
∈
x0
Def
e1ecc..
ZF_closed
:
ι
→
ο
:=
λ x0 .
and
(
and
(
Union_closed
x0
)
(
Power_closed
x0
)
)
(
Repl_closed
x0
)
Def
25345..
nIn
:
ι
→
ι
→
ο
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Def
1b322..
nSubq
:
ι
→
ι
→
ο
:=
λ x0 x1 .
not
(
x0
⊆
x1
)
Known
0e736..
UnivOf_ZF_closed
:
∀ x0 .
ZF_closed
(
prim6
x0
)
Known
3bf19..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
38267..
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
8d8e4..
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
4d966..
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Known
8349a..
EmptyE
:
∀ x0 .
nIn
x0
0
Known
eb5cb..
TrueI
:
True
Known
3c48d..
PowerI
:
∀ x0 x1 .
x1
⊆
x0
⟶
x1
∈
prim4
x0
Known
2faec..
Subq_Empty
:
∀ x0 .
0
⊆
x0
Known
7b673..
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
f9a23..
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
718be..
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Known
c5df8..
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
Known
cb999..
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
50fab..
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Known
ef907..
or3I1
:
∀ x0 x1 x2 : ο .
x0
⟶
or
(
or
x0
x1
)
x2
Known
827a9..
or3I2
:
∀ x0 x1 x2 : ο .
x1
⟶
or
(
or
x0
x1
)
x2
Known
3b7f5..
or3I3
:
∀ x0 x1 x2 : ο .
x2
⟶
or
(
or
x0
x1
)
x2
Known
2120c..
or3E
:
∀ x0 x1 x2 : ο .
or
(
or
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x3
)
⟶
(
x1
⟶
x3
)
⟶
(
x2
⟶
x3
)
⟶
x3
Known
906aa..
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
d10b2..
or4I1
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
Known
f9e4c..
or4I2
:
∀ x0 x1 x2 x3 : ο .
x1
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
Known
1a588..
or4I3
:
∀ x0 x1 x2 x3 : ο .
x2
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
Known
1ecd5..
or4I4
:
∀ x0 x1 x2 x3 : ο .
x3
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
Known
1fdc2..
or4E
:
∀ x0 x1 x2 x3 : ο .
or
(
or
(
or
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x4
)
⟶
(
x1
⟶
x4
)
⟶
(
x2
⟶
x4
)
⟶
(
x3
⟶
x4
)
⟶
x4
Known
11fc4..
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Known
4e8f4..
or5I1
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
Known
32035..
or5I2
:
∀ x0 x1 x2 x3 x4 : ο .
x1
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
Known
4aca8..
or5I3
:
∀ x0 x1 x2 x3 x4 : ο .
x2
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
Known
8e109..
or5I4
:
∀ x0 x1 x2 x3 x4 : ο .
x3
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
Known
59477..
or5I5
:
∀ x0 x1 x2 x3 x4 : ο .
x4
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
Known
780a9..
or5E
:
∀ x0 x1 x2 x3 x4 : ο .
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
⟶
∀ x5 : ο .
(
x0
⟶
x5
)
⟶
(
x1
⟶
x5
)
⟶
(
x2
⟶
x5
)
⟶
(
x3
⟶
x5
)
⟶
(
x4
⟶
x5
)
⟶
x5
Known
a5dc2..
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Known
c8938..
and7I
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
Known
41253..
and8I
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
Known
7c691..
and9I
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
x8
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
x8
Known
19e22..
and10I
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
x8
⟶
x9
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
x8
)
x9
Known
34224..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
x8
⟶
x9
⟶
x10
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
x8
)
x9
)
x10
Known
e679b..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
x8
⟶
x9
⟶
x10
⟶
x11
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
x8
)
x9
)
x10
)
x11
Known
f9d7e..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
x8
⟶
x9
⟶
x10
⟶
x11
⟶
x12
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
x8
)
x9
)
x10
)
x11
)
x12
Known
5a186..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
x8
⟶
x9
⟶
x10
⟶
x11
⟶
x12
⟶
x13
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
x8
)
x9
)
x10
)
x11
)
x12
)
x13
Known
4e587..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
x8
⟶
x9
⟶
x10
⟶
x11
⟶
x12
⟶
x13
⟶
x14
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
x8
)
x9
)
x10
)
x11
)
x12
)
x13
)
x14
Known
be87f..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
x8
⟶
x9
⟶
x10
⟶
x11
⟶
x12
⟶
x13
⟶
x14
⟶
x15
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
x8
)
x9
)
x10
)
x11
)
x12
)
x13
)
x14
)
x15
Known
7b71b..
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Known
1a989..
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
6a283..
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Known
a56fc..
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Known
2efba..
Subq_ref
:
∀ x0 .
x0
⊆
x0
Known
fed66..
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
98869..
Empty_Subq_eq
:
∀ x0 .
x0
⊆
0
⟶
x0
=
0
Known
8b915..
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Known
bade0..
UnionI
:
∀ x0 x1 x2 .
x1
∈
x2
⟶
x2
∈
x0
⟶
x1
∈
prim3
x0
Known
64707..
PowerE
:
∀ x0 x1 .
x1
∈
prim4
x0
⟶
x1
⊆
x0
Known
b7cc6..
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
f8498..
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
34fef..
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
0835b..
Repl_Empty
:
∀ x0 :
ι → ι
.
prim5
0
x0
=
0
Known
78184..
ReplEq_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
prim5
x0
x1
=
prim5
x0
x2
Param
1452f..
ordsucc
:
ι
→
ι
Known
3be80..
In_0_1
:
0
∈
1
Known
5a202..
In_0_2
:
0
∈
2
Known
431e9..
In_1_2
:
1
∈
2
Known
313d9..
In_0_3
:
0
∈
3
Known
8f3ce..
In_1_3
:
1
∈
3
Known
ebdb5..
In_2_3
:
2
∈
3
Known
2d416..
In_0_4
:
0
∈
4
Known
1e2d5..
In_1_4
:
1
∈
4
Known
2cbb9..
In_2_4
:
2
∈
4
Known
22a0a..
In_3_4
:
3
∈
4
Known
965bc..
In_0_5
:
0
∈
5
Known
34c02..
In_1_5
:
1
∈
5
Known
7ed8e..
In_2_5
:
2
∈
5
Known
df92f..
In_3_5
:
3
∈
5
Known
03b9f..
In_4_5
:
4
∈
5
Known
c6f0c..
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Known
74563..
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Known
1a8a2..
cases_3
:
∀ x0 .
x0
∈
3
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
x0
Known
58ec1..
cases_4
:
∀ x0 .
x0
∈
4
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
x0
Known
f3805..
cases_5
:
∀ x0 .
x0
∈
5
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
x0