Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrKgQ..
/
a2346..
PUUDn..
/
c643b..
vout
PrKgQ..
/
7c35c..
0.05 bars
TMKkm..
/
885a5..
negprop ownership controlledby
PrEBh..
upto 0
TMSZu..
/
ac968..
negprop ownership controlledby
PrEBh..
upto 0
TMckG..
/
266ad..
ownership of
4b38a..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMVob..
/
0c426..
ownership of
43760..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMUEA..
/
0692b..
ownership of
6eec9..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMd8P..
/
500b5..
ownership of
9b4ee..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMSve..
/
2054d..
ownership of
8ba3f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFSp..
/
76645..
ownership of
40cdd..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXTP..
/
e73b1..
ownership of
56101..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXaM..
/
40d5f..
ownership of
43a3b..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMdDE..
/
ea447..
ownership of
380d6..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMc8Q..
/
a4481..
ownership of
81d5b..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMY2n..
/
c5179..
ownership of
49a9d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMUB7..
/
d5718..
ownership of
ff022..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMLQq..
/
921f2..
ownership of
2d9d0..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMWVS..
/
e1af3..
ownership of
a4ce1..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
PUfEt..
/
f74e1..
doc published by
PrEBh..
Param
unpack_p_i
unpack_p_i
:
ι
→
(
ι
→
(
ι
→
ο
) →
ι
) →
ι
Param
pack_p
pack_p
:
ι
→
(
ι
→
ο
) →
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
2d9d0..
:=
λ x0 x1 x2 x3 .
unpack_p_i
x0
(
λ x4 .
pack_p
{x5 ∈
x4
|
ap
x2
x5
=
ap
x3
x5
}
)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
unpack_p_i_eq
unpack_p_i_eq
:
∀ x0 :
ι →
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
iff
(
x2
x4
)
(
x3
x4
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_p_i
(
pack_p
x1
x2
)
x0
=
x0
x1
x2
Known
pack_p_ext
pack_p_ext
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
pack_p
x0
x1
=
pack_p
x0
x2
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
49a9d..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 x3 x4 .
2d9d0..
(
pack_p
x0
x1
)
x2
x3
x4
=
pack_p
{x6 ∈
x0
|
ap
x3
x6
=
ap
x4
x6
}
x1
(proof)
Definition
struct_p
struct_p
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ο
.
x1
(
pack_p
x2
x3
)
)
⟶
x1
x0
Param
UnaryPredHom
Hom_struct_p
:
ι
→
ι
→
ι
→
ο
Definition
MetaCat_equalizer_p
equalizer_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 .
λ x10 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
x1
x4
x5
x7
)
)
(
x0
x8
)
)
(
x1
x8
x4
x9
)
)
(
x3
x8
x4
x5
x6
x9
=
x3
x8
x4
x5
x7
x9
)
)
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x1
x11
x4
x12
⟶
x3
x11
x4
x5
x6
x12
=
x3
x11
x4
x5
x7
x12
⟶
and
(
and
(
x1
x11
x8
(
x10
x11
x12
)
)
(
x3
x11
x8
x4
x9
(
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x11
x8
x13
⟶
x3
x11
x8
x4
x9
x13
=
x12
⟶
x13
=
x10
x11
x12
)
)
Definition
MetaCat_equalizer_struct_p
equalizer_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 :
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 x8 .
x0
x7
⟶
x0
x8
⟶
∀ x9 x10 .
x1
x7
x8
x9
⟶
x1
x7
x8
x10
⟶
MetaCat_equalizer_p
x0
x1
x2
x3
x7
x8
x9
x10
(
x4
x7
x8
x9
x10
)
(
x5
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
)
Param
struct_id
struct_id
:
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Known
41253..
and8I
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
55fb5..
Hom_struct_p_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 .
UnaryPredHom
(
pack_p
x0
x2
)
(
pack_p
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
x2
x6
⟶
x3
(
ap
x4
x6
)
)
Known
pack_p_0_eq2
pack_p_0_eq2
:
∀ x0 .
∀ x1 :
ι → ο
.
x0
=
ap
(
pack_p
x0
x1
)
0
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Theorem
380d6..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_p
x1
)
⟶
(
∀ x1 x2 x3 x4 .
x0
x1
⟶
x0
x2
⟶
UnaryPredHom
x1
x2
x3
⟶
UnaryPredHom
x1
x2
x4
⟶
x0
(
2d9d0..
x1
x2
x3
x4
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
x0
UnaryPredHom
struct_id
struct_comp
x2
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Known
pack_struct_p_I
pack_struct_p_I
:
∀ x0 .
∀ x1 :
ι → ο
.
struct_p
(
pack_p
x0
x1
)
Theorem
56101..
MetaCat_struct_p_equalizer_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
struct_p
UnaryPredHom
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
MetaCat
MetaCat
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
caa5e..
MetaCat_struct_p
:
MetaCat
struct_p
UnaryPredHom
struct_id
struct_comp
Definition
MetaCat_pullback_p
pullback_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 x10 x11 .
λ x12 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x5
x6
x8
)
)
(
x0
x9
)
)
(
x1
x9
x4
x10
)
)
(
x1
x9
x5
x11
)
)
(
x3
x9
x4
x6
x7
x10
=
x3
x9
x5
x6
x8
x11
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x13
x4
x14
⟶
∀ x15 .
x1
x13
x5
x15
⟶
x3
x13
x4
x6
x7
x14
=
x3
x13
x5
x6
x8
x15
⟶
and
(
and
(
and
(
x1
x13
x9
(
x12
x13
x14
x15
)
)
(
x3
x13
x9
x4
x10
(
x12
x13
x14
x15
)
=
x14
)
)
(
x3
x13
x9
x5
x11
(
x12
x13
x14
x15
)
=
x15
)
)
(
∀ x16 .
x1
x13
x9
x16
⟶
x3
x13
x9
x4
x10
x16
=
x14
⟶
x3
x13
x9
x5
x11
x16
=
x15
⟶
x16
=
x12
x13
x14
x15
)
)
Definition
MetaCat_pullback_struct_p
pullback_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 x10 .
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
∀ x11 x12 .
x1
x8
x10
x11
⟶
x1
x9
x10
x12
⟶
MetaCat_pullback_p
x0
x1
x2
x3
x8
x9
x10
x11
x12
(
x4
x8
x9
x10
x11
x12
)
(
x5
x8
x9
x10
x11
x12
)
(
x6
x8
x9
x10
x11
x12
)
(
x7
x8
x9
x10
x11
x12
)
Param
MetaCat_product_constr_p
product_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
ed2b0..
product_equalizer_pullback_constr_ex
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
x0
x1
x2
x3
x5
x7
x9
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
Known
4f9ac..
MetaCat_struct_p_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
struct_p
UnaryPredHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Theorem
8ba3f..
MetaCat_struct_p_pullback_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
struct_p
UnaryPredHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
PtdPred
struct_p_nonempty
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
True
True
:=
∀ x0 : ο .
x0
⟶
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
d8d91..
:
∀ x0 .
PtdPred
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ο
.
∀ x4 .
x4
∈
x2
⟶
x3
x4
⟶
x1
(
pack_p
x2
x3
)
)
⟶
x1
x0
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Known
In_1_2
In_1_2
:
1
∈
2
Known
In_0_2
In_0_2
:
0
∈
2
Known
93af6..
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
PtdPred
(
pack_p
x0
x1
)
Known
TrueI
TrueI
:
True
Known
In_0_1
In_0_1
:
0
∈
1
Theorem
6eec9..
:
not
(
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
PtdPred
UnaryPredHom
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)
Theorem
4b38a..
:
not
(
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
PtdPred
UnaryPredHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)