Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr7sm../3847b..
PUeqF../327bf..
vout
Pr7sm../085dc.. 5.99 bars
TMWcg../9f4d1.. ownership of 8072a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWCB../121ef.. ownership of bada1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTJg../c4786.. ownership of e602f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcsy../ada7f.. ownership of 0f1c0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGPR../dbb08.. ownership of 9dcd2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMK4w../bc89f.. ownership of 82014.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMFjd../ff9fc.. ownership of 6a542.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHKb../4ff32.. ownership of 6a296.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWLq../348ab.. ownership of 5f50d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRVh../c6a10.. ownership of 8014c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRw6../868f2.. ownership of e31d0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKTb../dd5c8.. ownership of af2f4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHho../826e4.. ownership of 540b6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMM5M../b80d2.. ownership of 77dd7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMEmz../7ef39.. ownership of a23a4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXPm../df251.. ownership of aa76a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMU5K../40a53.. ownership of 6cc1c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRup../a8df2.. ownership of b71a5.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQNr../d8ad0.. ownership of 5b7cb.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHC6../57b52.. ownership of 618c1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUKe3../2cd2f.. doc published by Pr4zB..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)not (x0 x3 x4)x5)x5
Definition c5756.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)not (x0 x2 x5)x0 x3 x5x0 x4 x5x6)x6
Definition f831d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6x0 x2 x6x0 x3 x6x0 x4 x6not (x0 x5 x6)x7)x7
Known 7cfa7.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0c5756.. x1 x2 x3 x4 x5 x6c5756.. x1 x3 x2 x4 x5 x6
Theorem 5b7cb.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0f831d.. x1 x2 x3 x4 x5 x6 x7f831d.. x1 x3 x2 x4 x5 x6 x7 (proof)
Known c8c81.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0c5756.. x1 x2 x3 x4 x5 x6c5756.. x1 x2 x3 x5 x4 x6
Theorem 6cc1c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0f831d.. x1 x2 x3 x4 x5 x6 x7f831d.. x1 x2 x3 x5 x4 x6 x7 (proof)
Definition 80df3.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)x0 x1 x5x0 x2 x5x0 x3 x5x0 x4 x5x6)x6
Definition af3c4.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (80df3.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6x0 x2 x6x0 x3 x6x0 x4 x6not (x0 x5 x6)x7)x7
Known 08b9e.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x080df3.. x1 x2 x3 x4 x5 x680df3.. x1 x2 x3 x5 x4 x6
Theorem a23a4.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0af3c4.. x1 x2 x3 x4 x5 x6 x7af3c4.. x1 x2 x3 x5 x4 x6 x7 (proof)
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Theorem 540b6.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0af3c4.. x1 x2 x3 x4 x5 x6 x7af3c4.. x1 x2 x3 x4 x5 x7 x6 (proof)
Theorem e31d0.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0f831d.. x1 x2 x3 x4 x5 x6 x7f831d.. x1 x3 x2 x5 x4 x6 x7 (proof)
Theorem 5f50d.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0af3c4.. x1 x2 x3 x4 x5 x6 x7af3c4.. x1 x2 x3 x5 x4 x7 x6 (proof)
Param 4402e.. : ι(ιιο) → ο
Param cf2df.. : ι(ιιο) → ο
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param setminussetminus : ιιι
Param SingSing : ιι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Known 53a3c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0not (x1 x2 x3)not (x1 x3 x2))cf2df.. x0 x1∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0(x2 = x3∀ x7 : ο . x7)(x2 = x4∀ x7 : ο . x7)(x3 = x4∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)(x2 = x6∀ x7 : ο . x7)(x3 = x6∀ x7 : ο . x7)(x4 = x6∀ x7 : ο . x7)(x5 = x6∀ x7 : ο . x7)not (x1 x2 x3)not (x1 x2 x4)not (x1 x3 x4)not (x1 x2 x5)not (x1 x3 x5)not (x1 x4 x5)not (x1 x2 x6)not (x1 x3 x6)not (x1 x4 x6)not (x1 x5 x6)False
Known 61345.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)4402e.. x0 x1∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)x1 x2 x3x1 x2 x4x1 x3 x4False
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known SingISingI : ∀ x0 . x0Sing x0
Theorem 6a542.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0f831d.. x2 x4 x5 x6 x7 x8 x9∀ x10 : ο . (x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)x10 (proof)
Theorem 9dcd2.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0af3c4.. x2 x4 x5 x6 x7 x8 x9∀ x10 : ο . (x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)x10 (proof)
Definition 4ce91.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6x0 x2 x6not (x0 x3 x6)not (x0 x4 x6)not (x0 x5 x6)x7)x7
Definition cb525.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (4ce91.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 2de86.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6not (x0 x3 x6)x0 x4 x6not (x0 x5 x6)x7)x7
Definition 02f3e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition ba720.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6x0 x2 x6not (x0 x3 x6)x0 x4 x6not (x0 x5 x6)x7)x7
Definition 28532.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (ba720.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition f8709.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6x0 x4 x6not (x0 x5 x6)x7)x7
Definition 185eb.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 18ba2.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f831d.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 02ade.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6x0 x2 x6not (x0 x3 x6)not (x0 x4 x6)x0 x5 x6x7)x7
Definition b0193.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (02ade.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 62523.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)not (x0 x2 x5)not (x0 x3 x5)x0 x4 x5x6)x6
Definition 659a1.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (62523.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6not (x0 x4 x6)x0 x5 x6x7)x7
Definition 99e5f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (659a1.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition fba9e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (62523.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6not (x0 x4 x6)not (x0 x5 x6)x7)x7
Definition 948b9.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (fba9e.. x0 x1 x3 x4 x2 x6 x5(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7x0 x4 x7not (x0 x5 x7)x0 x6 x7x8)x8
Definition a542b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (62523.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)not (x0 x2 x6)x0 x3 x6not (x0 x4 x6)x0 x5 x6x7)x7
Definition a53de.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (a542b.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)x0 x4 x7not (x0 x5 x7)x0 x6 x7x8)x8
Definition 4ea7e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)not (x0 x2 x6)x0 x3 x6x0 x4 x6not (x0 x5 x6)x7)x7
Definition b9d10.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (4ea7e.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)not (x0 x4 x7)x0 x5 x7x0 x6 x7x8)x8
Known 5d146.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0c5756.. x1 x2 x3 x4 x5 x6c5756.. x1 x3 x2 x5 x4 x6
Known 764ed.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x08b6ad.. x1 x2 x3 x4 x58b6ad.. x1 x3 x4 x5 x2
Known d7596.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x08b6ad.. x1 x2 x3 x4 x58b6ad.. x1 x3 x2 x4 x5
Theorem e602f.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0f831d.. x2 x4 x5 x6 x7 x8 x9∀ x10 : ο . (∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0cb525.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x002f3e.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x028532.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0185eb.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x018ba2.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0b0193.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x099e5f.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0948b9.. x2 x11 x3 x12 x13 x14 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0a53de.. x2 x11 x12 x3 x13 x14 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0b9d10.. x2 x11 x12 x13 x3 x14 x15 x16x10)x10 (proof)
Definition 2b028.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5x0 x3 x5x0 x4 x5x6)x6
Definition 1e330.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (2b028.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6x0 x2 x6x0 x3 x6x0 x4 x6not (x0 x5 x6)x7)x7
Definition c8dd3.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (1e330.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 2bd79.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (af3c4.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 9ab39.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (2b028.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6x0 x4 x6not (x0 x5 x6)x7)x7
Definition 1c500.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (9ab39.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)not (x0 x3 x7)not (x0 x4 x7)x0 x5 x7x0 x6 x7x8)x8
Known 51a01.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x08b6ad.. x1 x2 x3 x4 x58b6ad.. x1 x4 x5 x2 x3
Known da9f0.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x08b6ad.. x1 x2 x3 x4 x58b6ad.. x1 x3 x2 x5 x4
Known e7d99.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x08b6ad.. x1 x2 x3 x4 x58b6ad.. x1 x5 x2 x3 x4
Known d257b.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x08b6ad.. x1 x2 x3 x4 x58b6ad.. x1 x3 x4 x2 x5
Theorem 8072a.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0af3c4.. x2 x4 x5 x6 x7 x8 x9∀ x10 : ο . (∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x018ba2.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0c8dd3.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x02bd79.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x01c500.. x2 x3 x11 x12 x13 x14 x15 x16x10)x10 (proof)